
Gongye Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mechanics of Materials, 2020, 149, 103412.	1.7	60
2	A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Continuum Mechanics and Thermodynamics, 2016, 28, 195-213.	1.4	54
3	A microstructure- and surface energy-dependent third-order shear deformation beam model. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 1871-1894.	0.7	53
4	Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Composite Structures, 2018, 189, 263-272.	3.1	44
5	Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mechanica, 2018, 229, 4199-4214.	1.1	38
6	Band gaps for wave propagation in 2-D periodic three-phase composites with coated star-shaped inclusions and an orthotropic matrix. Composites Part B: Engineering, 2020, 182, 107319.	5.9	35
7	A new Bernoulli–Euler beam model based on a reformulated strain gradient elasticity theory. Mathematics and Mechanics of Solids, 2020, 25, 630-643.	1.5	35
8	A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory. Acta Mechanica, 2020, 231, 4323-4350.	1.1	35
9	A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mechanica, 2015, 226, 4073-4085.	1.1	34
10	Elastic wave propagation in 3-D periodic composites: Band gaps incorporating microstructure effects. Composite Structures, 2018, 204, 920-932.	3.1	31
11	A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I – reconsideration of curvature-based flexoelectricity theory. Mathematics and Mechanics of Solids, 2021, 26, 1647-1659.	1.5	30
12	A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mechanica, 2017, 228, 3811-3825.	1.1	28
13	A new model for thermally induced redistributions of free carriers in centrosymmetric flexoelectric semiconductor beams. Mechanics of Materials, 2022, 171, 104328.	1.7	24
14	Isogeometric analysis for non-classical Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Applied Mathematical Modelling, 2021, 89, 470-485.	2.2	23
15	Isogeometric analysis of size-dependent Bernoulli–Euler beam based on a reformulated strain gradient elasticity theory. Computers and Structures, 2021, 253, 106577.	2.4	23
16	A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160275.	1.0	21
17	Elastic wave propagation in a periodic composite plate structure: band gaps incorporating microstructure, surface energy and foundation effects. Journal of Mechanics of Materials and Structures, 2019, 14, 219-236.	0.4	19
18	A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mechanica, 2019, 230, 243-264.	1.1	18

GONGYE ZHANG

#	Article	IF	CITATIONS
19	A new isogeometric Timoshenko beam model incorporating microstructures and surface energy effects. Mathematics and Mechanics of Solids, 2020, 25, 2005-2022.	1.5	18
20	A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mechanica, 2021, 232, 2225-2248.	1.1	17
21	Bending, Buckling and Vibration Analysis of Complete Microstructure-Dependent Functionally Graded Material Microbeams. International Journal of Applied Mechanics, 2021, 13, .	1.3	17
22	Magnetically tunable bandgaps in phononic crystal nanobeams incorporating microstructure and flexoelectric effects. Applied Mathematical Modelling, 2022, 111, 554-566.	2.2	16
23	Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects. Archive of Applied Mechanics, 2023, 93, 245-260.	1.2	15
24	A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects. Acta Mechanica, 2022, 233, 1719-1738.	1,1	15
25	A non-classical model for first-ordershear deformation circular cylindrical thin shells incorporating microstructure and surface energy effects. Mathematics and Mechanics of Solids, 2021, 26, 1294-1319.	1.5	14
26	On the Bending and Vibration Analysis of Functionally Graded Magneto-Electro-Elastic Timoshenko Microbeams. Crystals, 2021, 11, 1206.	1.0	14
27	Elastic wave propagation in a periodic composite beam structure: A new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects. Journal of Micromechanics and Molecular Physics, 2018, 03, 1840005.	0.7	13
28	Band gaps for flexural elastic wave propagation in periodic composite plate structures based on a non-classical Mindlin plate model incorporating microstructure and surface energy effects. Continuum Mechanics and Thermodynamics, 2019, 31, 1911-1930.	1.4	11
29	Tunable Bandgaps in Phononic Crystal Microbeams Based on Microstructure, Piezo and Temperature Effects. Crystals, 2021, 11, 1029.	1.0	11
30	Size and temperature effects on band gaps in periodic fluid-filled micropipes. Applied Mathematics and Mechanics (English Edition), 2021, 42, 1219-1232.	1.9	11
31	A non-classical Bernoulli-Euler beam model based on a simplified micromorphic elasticity theory. Mechanics of Materials, 2021, 161, 103967.	1.7	11
32	Bending and Wave Propagation Analysis of Magneto-Electro-Elastic Functionally Graded Porous Microbeams. Crystals, 2022, 12, 732.	1.0	11
33	Band gaps for elastic flexural wave propagation in periodic composite plate structures with star-shaped, transversely isotropic, magneto-electro-elastic inclusions. Acta Mechanica, 2021, 232, 4325-4346.	1.1	10
34	Mechanically induced electric and magnetic fields in the bending and symmetric-shear deformations of a microstructure-dependent FG-MEE composite beam. Composite Structures, 2021, 278, 114554.	3.1	9
35	A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory. Mechanics of Advanced Materials and Structures, 2022, 29, 2521-2530.	1.5	9
36	Global and local flexotronic effects induced by external magnetic fields in warping of a semiconducting composite fiber. Composite Structures, 2022, 295, 115711.	3.1	9

GONGYE ZHANG

#	Article	IF	CITATIONS
37	Microstructure-dependent Band Gaps for Elastic Wave Propagation in a Periodic Microbeam Structure. Acta Mechanica Solida Sinica, 2021, 34, 527-538.	1.0	8
38	Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1509-1519.	1.5	8
39	A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part II - variational formulations and applications in plates. Mathematics and Mechanics of Solids, 2022, 27, 2567-2587.	1.5	8
40	A non-classical couple stress based Mindlin plate finite element framework for tuning band gaps of periodic composite micro plates. Journal of Sound and Vibration, 2022, 529, 116889.	2.1	8
41	A Transversely Isotropic Magneto-Electro-Elastic Circular Kirchhoff Plate Model Incorporating Microstructure Effect. Acta Mechanica Solida Sinica, 2022, 35, 185-197.	1.0	5
42	A Non-Classical Model for Circular Mindlin Plates Incorporating Microstructure and Surface Energy Effects. Procedia IUTAM, 2017, 21, 48-55.	1.2	4
43	A simplified strain gradient Kirchhoff rod model and its applications on microsprings and microcolumns. Journal of Mechanics of Materials and Structures, 2020, 15, 203-223.	0.4	3
44	Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Surface Energy, Transverse Shear and Rotational Inertia Effects. , 2018, , .		0