Steven F. Durrant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555359/publications.pdf

Version: 2024-02-01

122 papers 2,042 citations

257450 24 h-index 289244 40 g-index

123 all docs

123 docs citations

times ranked

123

2089 citing authors

#	Article	IF	CITATIONS
1	Growth Evolution of AZO thin Films Deposited by Magnetron Sputtering at Room Temperature. Materials Research, 2021, 24, .	1.3	4
2	DEPRECIAÇÃO DE MÃQUINAS E EQUIPAMENTOS USANDO OS MÉTODOS LINHA, COLE, PERCENTAGEM CONSTANTE E CAIRES / DEPRECIATION OF MACHINERY AND EQUIPMENT USING, LINE, COLE, CONSTANT PERCENTAGE AND CAIRES METHODS. Brazilian Journal of Development, 2021, 7, 13736-13753.	0.1	0
3	Characterization of Plasma-deposited a-C:H:Si:F:N Films. Materials Research, 2021, 24, .	1.3	1
4	SnO2/ZnO Heterostructure as an Electron Transport Layer for Perovskite Solar Cells. Materials Research, 2021, 24, .	1.3	5
5	Use of red mud activated at different temperatures as a low cost adsorbent of reactive dye. Engenharia Sanitaria E Ambiental, 2021, 26, 805-811.	0.5	2
6	Structural and optical properties o plasma-deposited a-C:H:Si:O:N films. Polimeros, 2021, 31, .	0.7	2
7	Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction. Journal of Cleaner Production, 2020, 274, 122948.	9.3	36
8	Effects of cold SF6 plasma treatment on a-C:H, polypropylene and polystyrene. Surface and Coatings Technology, 2020, 385, 125398.	4.8	8
9	Análise do Desempenho do Protótipo Arduino com Sensor de pH para Medições da Qualidade de Ãgua contaminada em Igarapés de Manaus. Brazilian Journal of Development, 2020, 6, 20145-20156.	0.1	1
10	Co-doped p-type ZnO:Al-N Thin Films Grown by RF-Magnetron Sputtering at Room Temperature. Materials Research, 2020, 23, .	1.3	2
11	Comparison of RF and Pulsed Magnetron Sputtering for the Deposition of AZO Thin Films on PET. Materials Research, 2020, 23, .	1.3	2
12	Surface functionalization of polyvinyl chloride by plasma immersion techniques. Polimeros, 2020, 30, .	0.7	2
13	Al-doping and Properties of AZO Thin Films Grown at Room Temperature: Sputtering Pressure Effect. Materials Research, 2019, 22, .	1.3	19
14	Plasma Treatment of Crosslinked Polyethylene Tubes for Improved Adhesion of Water-based Paints. Materials Research, 2019, 22, .	1.3	2
15	Characterization of amorphous carbon films by PECVD and plasma ion implantation: The role of fluorine and sulfur doping. Materials Chemistry and Physics, 2019, 227, 170-175.	4.0	4
16	Surface properties and corrosion resistance of SF ₆ plasmaâ€treated polyesterâ€based thermoplastic elastomer. Surface and Interface Analysis, 2018, 50, 13-26.	1.8	2
17	Structural and optical properties of a-C:H:O:Cl and a-C:H:Si:O:Cl films obtained by Plasma Enhanced Chemical Vapor Deposition. Materials Chemistry and Physics, 2018, 214, 277-284.	4.0	O
18	Characterization of PECVD a-C:H:Si:O:Cl films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 04D103.	2.1	4

#	Article	IF	CITATIONS
19	Effect of the plasma excitation power on the properties of SiOxCyHz films deposited on AISI 304 steel. Surface and Coatings Technology, 2017, 311, 127-137.	4.8	26
20	Effects of Aging on Chlorinated Plasma Polymers. Materials Research, 2017, 20, 862-865.	1.3	1
21	Mg-Containing Hydroxyapatite Coatings Produced by Plasma Electrolytic Oxidation of Titanium. Materials Research, 2017, 20, 891-898.	1.3	3
22	Study of wettability and optical transparency of pet polymer modified by plasma immersion techniques. Revista Brasileira De Aplicações De VÃ;cuo, 2017, 36, 68.	0.1	2
23	Characterization of amorphous hydrogenated chlorinated plasma polymers. Surface and Coatings Technology, 2016, 289, 118-123.	4.8	9
24	Effect of Ion Irradiation on the Structural Properties and Hardness of a-C:H:Si:O:F Films. Journal of Physics: Conference Series, 2015, 591, 012044.	0.4	2
25	Growth evolution of self-textured ZnO films deposited by magnetron sputtering at low temperatures. Applied Surface Science, 2015, 334, 210-215.	6.1	19
26	Cell Adhesion to Plasma-Coated PVC. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	3
27	Morphological and electrical evolution of ZnO: Al thin filmsdeposited by RF magnetron sputtering onto glass substrates. Materials Research, 2014, 17, 1384-1390.	1.3	30
28	Feasibility of RF Sputtering and PIIID for production of thin films from red mud. Materials Research, 2014, 17, 1316-1323.	1.3	2
29	Hydroxyapatite coating deposited on grade 4 Titanium by Plasma Electrolytic Oxidation. Materials Research, 2014, 17, 1427-1433.	1.3	6
30	Structural transition of ZnO thin films produced by RF magnetron sputtering at low temperatures. Journal of Materials Science: Materials in Electronics, 2013, 24, 3143-3148.	2.2	11
31	Structural and optical properties of brominated plasma polymers. Surface and Coatings Technology, 2013, 237, 182-186.	4.8	0
32	Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition. Applied Surface Science, 2013, 280, 474-481.	6.1	18
33	Hydrosedimentological disequilibrium in a small, urbanized watershed. Acta Limnologica Brasiliensia, 2013, 25, 140-149.	0.4	5
34	Al-Doping Effect on the Surface Morphology of ZnO Films Grown by Reactive RF Magnetron Sputtering. Materials Sciences and Applications, 2013, 04, 761-767.	0.4	7
35	Effect of Zn Sputtering Rate on the Morphological and Optical Properties of ZnO Films. Materials Sciences and Applications, 2013, 04, 802-807.	0.4	0
36	A Novel Plasma Technique for Surface Treatment: The Plasma Expander. IEEE Transactions on Plasma Science, 2012, 40, 492-496.	1.3	7

#	Article	IF	Citations
37	Diverse Amorphous Carbonaceous Thin Films Obtained by Plasma Enhanced Chemical Vapor Deposition and Plasma Immersion Ion Implantation and Deposition. Physics Procedia, 2012, 32, 48-57.	1.2	5
38	Lubricating coating prepared by PIIID on a forming tool. Journal of Physics: Conference Series, 2012, 370, 012022.	0.4	3
39	Radionuclide concentrations in raw and purified phosphoric acids from Brazil and their processing wastes: implications for radiation exposures. Environmental Geochemistry and Health, 2012, 34, 103-111.	3.4	7
40	Treatment of PVC using an alternative low energy ion bombardment procedure. Applied Surface Science, 2011, 258, 1854-1861.	6.1	28
41	Reduction of Bacterial Adhesion to Biocompatible Polymer Surfaces Via Plasma Processing. Plasma Medicine, 2011, 1, 157-166.	0.6	4
42	Structural and optical properties of chlorinated plasma polymers. Thin Solid Films, 2011, 520, 1442-1445.	1.8	9
43	Effects of helium ion irradiation on fluorinated plasma polymers. Surface and Coatings Technology, 2010, 204, 3059-3063.	4.8	4
44	Use of Saccharomyces cerevisiae immobilized in agarose gel as a binding agent for diffusive gradients in thin films. Analytica Chimica Acta, 2010, 683, 107-112.	5 . 4	39
45	Evaluation of blood compatibility of plasma deposited heparin-like films and SF6 plasma treated surfaces. Materials Research, 2010, 13, 95-98.	1.3	23
46	Potential Use of Polyacrylamide for Soil Erosion Control in Brazil. Journal of Sustainable Development, 2010, 3, .	0.3	2
47	Controlled fluorination of a-C:F:H films by PECVD of ethylene–hexafluorobenzene mixtures. Surface and Coatings Technology, 2008, 203, 526-529.	4.8	8
48	Plasma enhanced chemical vapor deposition of titanium (IV) ethoxide–oxygen–helium mixtures. Thin Solid Films, 2008, 516, 4940-4945.	1.8	6
49	Effects of nitrogen ion irradiation on plasma polymerized films produced from titanium tetraisopropoxide–oxygen–helium mixtures. Surface and Coatings Technology, 2008, 203, 534-537.	4.8	4
50	Developments in hot-filament metal oxide deposition (HFMOD). Thin Solid Films, 2008, 516, 789-793.	1.8	10
51	Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition. Thin Solid Films, 2008, 516, 803-806.	1.8	7
52	Soil loss risk and habitat quality in streams of a meso-scale river basin. Scientia Agricola, 2007, 64, 336-343.	1.2	38
53	Measurements of gunshot residues by sector field inductively coupled plasma mass spectrometryâ€"Further studies with pistols. Forensic Science International, 2007, 172, 63-66.	2.2	42
54	XPS Investigation of Plasma-Deposited Polysiloxane Films Irradiated with Helium Ions. Plasma Processes and Polymers, 2007, 4, 482-488.	3.0	13

#	Article	IF	CITATIONS
55	Helium Ion Irradiation of Polymer Films Deposited from TMS-Ar Plasmas. Plasma Processes and Polymers, 2007, 4, 489-496.	3.0	6
56	Infrared spectroscopy investigation of various plasma-deposited polymer films irradiated with 170keV He+ ions. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 162-166.	1.4	3
57	Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition. Thin Solid Films, 2006, 515, 1561-1567.	1.8	15
58	On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 1074-1079.	2.9	37
59	Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal of Analytical Atomic Spectrometry, 2005, 20, 821.	3.0	123
60	Optical Fiber Device and Biological Tissue Phantoms for Determination of Optical Parameters in the Nearâ€Infrared Region. Instrumentation Science and Technology, 2004, 32, 489-505.	1.8	5
61	Optical and Electrical Properties of Polymerizing Plasmas and Their Correlation with DLC Film Properties. Plasmas and Polymers, 2004, 9, 1-22.	1.5	10
62	Molybdenum Oxide Thin Films Obtained by the Hot-Filament Metal Oxide Deposition Technique. Chemistry of Materials, 2004, 16, 513-520.	6.7	92
63	Tungsten Oxide Films of High Electrochromic Efficiencies Obtained by Deposition. Electrochemical and Solid-State Letters, 2003, 6, H9.	2.2	9
64	Growth of glassy carbon on natural fibers. Journal of Non-Crystalline Solids, 2002, 304, 271-277.	3.1	3
65	Electron emission enhanced chemical vapor deposition (EEECVD) for the fabrication of diverse silicon-containing films. Thin Solid Films, 2001, 398-399, 591-596.	1.8	3
66	Structural properties of diamond and diamond-like carbon grown on stainless-steel blades. Thin Solid Films, 2001, 398-399, 255-259.	1.8	4
67	Growth of diamond and carbon structures on natural pyrolized fibers. Thin Solid Films, 2001, 398-399, 260-264.	1.8	1
68	Development of tubes of micro-crystalline diamond and diamond-like carbon. Thin Solid Films, 2001, 398-399, 250-254.	1.8	10
69	Gas-phase and plasma-surface reactions in radiofrequency discharges of C2H2–N2–noble gas mixtures. Thin Solid Films, 2001, 398-399, 156-162.	1.8	4
70	Characterization of diamond fluorinated by glow discharge plasma treatment. Diamond and Related Materials, 2001, 10, 490-495.	3.9	12
71	Synthesis of diamond from ethanol highly diluted in neon/hydrogen mixtures. Diamond and Related Materials, 2001, 10, 927-930.	3.9	1
72	Method of porous diamond deposition on porous silicon. Applied Surface Science, 2001, 185, 108-113.	6.1	10

#	Article	IF	CITATIONS
73	Fabrication of smooth diamond films on SiO2 by the addition of nitrogen to the gas feed in hot-filament chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1052-1056.	2.1	2
74	Micro-crystalline diamond and nano-carbon structures produced using a high argon concentration in hot-filament chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1057-1062.	2.1	10
75	Photoluminescent Properties of Porous Carbon Films Pyrolised on Silicon. Physica Status Solidi A, 2000, 182, 395-400.	1.7	5
76	Microcrystalline diamond deposition on a porous silicon host matrix. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 171-176.	3 . 5	12
77	Structural and photoluminescent properties of porous silicon with deep pores obtained by laser-assisted electrochemistry. Surface and Coatings Technology, 2000, 133-134, 325-330.	4.8	5
78	Effects of the addition of helium on the synthesis of diamond films. Thin Solid Films, 2000, 377-378, 182-187.	1.8	13
79	Hydrogen-containing carbon nitride films produced by the combined hot filament–plasma CVD technique. Thin Solid Films, 2000, 377-378, 280-284.	1.8	7
80	Effects of argon dilution of an ethanol/hydrogen gas feed on the growth of diamond by hot-filament chemical vapor deposition. Thin Solid Films, 2000, 377-378, 303-308.	1.8	19
81	Nucleation enhancement of diamond using natural lamellar hematite in the chemical vapor deposition process. Thin Solid Films, 2000, 377-378, 309-314.	1.8	0
82	Structural and photoluminescent properties of carbon structures on thick porous silicon. Thin Solid Films, 2000, 377-378, 315-319.	1.8	2
83	Semi-empirical modeling of the optical gap of amorphous hydrogenated nitrogenated carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2466.	2.1	2
84	Enhancement of diamond nucleation using the solid-liquid-gas interface energy. Journal of Applied Physics, 2000, 88, 1650-1654.	2.5	21
85	Deposition mechanisms and properties of oxygenated carbon nitride films from rf discharges of acetylene, nitrogen, oxygen and argon mixtures. Journal of Non-Crystalline Solids, 2000, 262, 216-227.	3.1	8
86	Nitrogen-doped diamond films. Journal of Applied Physics, 1999, 85, 7455-7458.	2.5	50
87	Structure and properties of diamond films deposited on porous silicon. Thin Solid Films, 1999, 355-356, 233-238.	1.8	16
88	Nitrogenation of diamond by glow discharge plasma treatment. Thin Solid Films, 1999, 355-356, 184-188.	1.8	3
89	Nitrogenated diamond produced by introducing ammonia into the gas feed in hot-filament CVD. Thin Solid Films, 1999, 355-356, 157-161.	1.8	12
90	Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. Journal of Analytical Atomic Spectrometry, 1999, 14, 1385-1403.	3.0	255

#	Article	IF	Citations
91	Thin film deposition from plasmas of tetramethylsilane-helium-argon mixtures with oxygen and with nitrogen. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1873-1879.	2.1	13
92	PECVD of amorphous hydrogenated oxygenated nitrogenated carbon films. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1881-1888.	2.1	14
93	Three polarization reflectometry methods for determination of optical anisotropy. Applied Optics, 1998, 37, 65.	2.1	12
94	Conventional and dynamic actinometry of glow discharges fed mixtures of tetramethylsilane, sulfur hexafluoride, and helium. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 509-513.	2.1	5
95	Structural and optical properties of plasma-deposited amorphous hydrogenated oxygenated carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1334-1339.	2.1	11
96	Structural and optical properties of amorphous hydrogenated fluorinated carbon films produced by PECVD. Thin Solid Films, 1997, 304, 149-156.	1.8	20
97	Semiquantitative Analysis of Biological Materials by Inductively Coupled Plasma–Mass Spectrometry. Microchemical Journal, 1997, 56, 352-372.	4.5	29
98	Nitrogenated amorphous carbon films deposited from plasmas of methanol-nitrogen mixtures. AlP Conference Proceedings, 1996 , , .	0.4	0
99	Plasma polymerization of methanol-sulfur hexafluoride mixtures: Discharge and film studies. AIP Conference Proceedings, 1996, , .	0.4	0
100	Fluorine-containing amorphous hydrogenated carbon films. Thin Solid Films, 1996, 281-282, 294-297.	1.8	5
101	Dynamic actinometric optical emission spectroscopy for the elucidation of plasma processes in the production of fluorinated amorphous hydrogenated carbon films from glow discharges. Thin Solid Films, 1996, 277, 115-120.	1.8	12
102	Plasma polymerized hexamethyldisiloxane: discharge and film studies. Vacuum, 1996, 47, 187-192.	3.5	15
103	Amorphous hydrogenated fluorinated carbon films produced by PECVD. Surface and Coatings Technology, 1996, 86-87, 443-448.	4.8	22
104	Amorphous oxygenâ€containing hydrogenated carbon films formed by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 118-124.	2.1	36
105	HMDSO plasma polymerization and thin film optical properties. Thin Solid Films, 1995, 270, 109-113.	1.8	60
106	Mechanisms of polymer film deposition from r.f. discharges of acetylene, nitrogen and helium mixtures. Thin Solid Films, 1995, 259, 139-145.	1.8	60
107	Optical emission study of reaction mechanisms in the deposition of nitrogenâ€containing amorphous hydrogenated carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1901-1906.	2.1	24
108	An actinometric study of C2H2 plasma polymerization and film properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2747-2752.	2.1	6

#	Article	IF	CITATIONS
109	Conventional and dynamic actinometry of discharges of hydrocarbon–oxygen–argon mixtures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2513-2518.	2.1	9
110	Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for the multielemental analysis of biological materials: a feasibility study. Food Chemistry, 1994, 49, 317-323.	8.2	37
111	Feasibility of improvement in analytical performance in laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) by addition of nitrogen to the argon plasma. Fresenius' Journal of Analytical Chemistry, 1994, 349, 768-771.	1.5	54
112	Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1994, 9, 199.	3.0	17
113	Alternatives to all-argon plasmas in inductively coupled plasma mass spectrometry (ICP-MS): an overview. Fresenius' Journal of Analytical Chemistry, 1993, 347-347, 389-392.	1.5	46
114	Rapid multielemental analysis of Chinese reference soils by laser ablation inductively coupled plasma-source mass spectrometry. Fresenius' Journal of Analytical Chemistry, 1993, 345, 512-517.	1.5	25
115	Relationships between the plasma environment and the composition and optical properties of plasmaâ€polymerized thin films produced in rf discharges of C2H2â€5F6mixtures. Journal of Applied Physics, 1992, 71, 448-455.	2.5	55
116	Analysis of biological standard reference materials by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1992, 7, 1139.	3.0	34
117	Multi-elemental analysis of environmental matrices by laser ablation inductively coupled plasma mass spectrometry. Analyst, The, 1992, 117, 1585.	3.5	42
118	Fluorinated polymer films from r.f. plasmas containing benzene and sulfur hexafluorine. Thin Solid Films, 1992, 220, 295-302.	1.8	33
119	Inductively coupled plasma—mass spectrometry for biological analysis. TrAC - Trends in Analytical Chemistry, 1992, 11, 68-73.	11.4	19
120	Trace elemental content of biological materials. Biological Trace Element Research, 1990, 26-27, 177-187.	3.5	27
121	Elemental Factors in Human Fetal Development. Journal of Nutritional Medicine, 1990, 1, 19-26.	0.3	11
122	X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) STUDY OF CONDUCTIVE TUBE AFTER NITROGEN PIII., 0, , 109-124.		0