Richard Kotek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45553/publications.pdf

Version: 2024-02-01

36 papers

1,324 citations

471061 17 h-index 344852 36 g-index

37 all docs

37 docs citations

37 times ranked

1962 citing authors

#	Article	IF	CITATIONS
1	Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochimica Acta, 2009, 54, 3630-3637.	2.6	231
2	Recent advances in core/shell bicomponent fibers and nanofibers: A review. Journal of Applied Polymer Science, 2018, 135, 46265.	1.3	131
3	Porous Nylon-6 Fibers via a Novel Salt-Induced Electrospinning Method. Macromolecules, 2009, 42, 709-715.	2.2	111
4	Lewis acid–base complexation of polyamide 66 to control hydrogen bonding, extensibility and crystallinity. Polymer, 2004, 45, 4077-4085.	1.8	76
5	Recent Advances in Polymer Fibers. Polymer Reviews, 2008, 48, 221-229.	5.3	76
6	Effect of blend ratio on bulk properties and matrix–fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer, 2002, 43, 1331-1341.	1.8	71
7	Morphology of electrospun nylonâ€6 nanofibers as a function of molecular weight and processing parameters. Journal of Applied Polymer Science, 2008, 108, 308-319.	1.3	71
8	A Review of Cellulose and Cellulose Blends for Preparation of Bio-derived and Conventional Membranes, Nanostructured Thin Films, and Composites. Polymer Reviews, 2018, 58, 102-163.	5.3	67
9	The promotion of axon extension in vitro using polymer-templated fibrin scaffolds. Biomaterials, 2011, 32, 4830-4839.	5.7	60
10	Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1815-1830.	1.9	54
11	Unusual polymerization of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride on PET substrates. Polymer, 2004, 45, 3215-3225.	1.8	44
12	Modification of \hat{l}^2 -cyclodextrin with itaconic acid and application of the new derivative to cotton fabrics. Carbohydrate Polymers, 2012, 88, 950-958.	5.1	43
13	Synthesis and gas barrier characterization of poly(ethylene isophthalate). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4247-4254.	2.4	25
14	Polypropylene alloy filaments dyeable with disperse dyes. Coloration Technology, 2004, 120, 26-29.	0.7	22
15	Constrained/Directed Crystallization of Nylon-6. I. Nonstoichiometric Inclusion Compounds Formed with Cyclodextrins. Macromolecules, 2009, 42, 8983-8991.	2.2	20
16	Advances in the Production of Poly(ethylene naphthalate) Fibers. Polymer Reviews, 2008, 48, 392-421.	5.3	19
17	Durable hydrophobic cotton surfaces prepared using silica nanoparticles and multifunctional silanes. Journal of the Textile Institute, 2012, 103, 385-393.	1.0	19
18	Characterization of degradation of polypropylene nonwovens irradiated by γâ€ray. Journal of Applied Polymer Science, 2014, 131, .	1.3	18

#	Article	IF	Citations
19	Mechanical and structural properties of melt spun polypropylene/nylon 6 alloy filaments. Journal of Applied Polymer Science, 2005, 97, 532-544.	1.3	17
20	Novel cellulose-collagen blend biofibers prepared from an amine/salt solvent system. International Journal of Biological Macromolecules, 2016, 92, 1197-1204.	3.6	16
21	Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. Journal of the Textile Institute, 2019, 110, 89-99.	1.0	15
22	Properties of chitosan/soy protein blended films with added plasticizing agent as a function of solvent type at acidic pH. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 11-17.	1.8	12
23	Direct Formation and Characterization of a Unique Precursor Morphology in the Melt-Spinning of Polyesters. Macromolecules, 2009, 42, 5437-5441.	2.2	11
24	High-performance filaments by melt spinning low viscosity nylon 6 using horizontal isothermal bath process. Polymer Engineering and Science, 2015, 55, 2457-2464.	1.5	11
25	Development of high-tenacity, high-modulus poly(ethylene terephthalate) filaments via a next generation wet-melt-spinning process. Polymer Engineering and Science, 2017, 57, 224-230.	1.5	10
26	Ring-opening polymerization of the cyclic dimer of poly(trimethylene terephthalate). Journal of Polymer Science Part A, 2006, 44, 6801-6809.	2.5	9
27	Reorganization of the chain packing between poly(ethylene isophthalate) chains via coalescence from their inclusion compound formed with \hat{I}^3 -cyclodextrin. Journal of Applied Polymer Science, 2006, 102, 6049-6053.	1.3	9
28	Relationship between tensile properties and ballistic performance of poly(ethylene naphthalate) woven and nonwoven fabrics. Journal of Applied Polymer Science, 2012, 125, 2271-2280.	1.3	9
29	Cellulose and Soy Proteins Based Membrane Networks. Macromolecular Symposia, 2013, 329, 70-86.	0.4	9
30	Alkaline depolymerization of poly(trimethylene terephthalate). Journal of Applied Polymer Science, 2001, 82, 99-107.	1.3	7
31	Surface hydrolysis of filaments based on poly(trimethylene terephthalate) spun at high spinning speeds. Journal of Applied Polymer Science, 2004, 92, 1724-1730.	1.3	7
32	Controlling of threadline dynamics via a novel method to develop ultra-high performance polypropylene filaments. Polymer Engineering and Science, 2015, 55, 327-339.	1.5	6
33	Photostability of isotactic polypropylene containing monoazo pigment. Journal of Applied Polymer Science, 2008, 108, 2950-2957.	1.3	4
34	Highly crystalline and oriented highâ€strength poly(ethylene terephthalate) fibers by using low molecular weight polymer. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
35	Properties of cellulose–soy protein blend biofibers regenerated from an amine/salt solvent system. Cellulose, 2016, 23, 3747-3759.	2.4	3
36	Mechanical properties of PTT fibers by sustainable horizontal isothermal bath process. SN Applied Sciences, 2019, 1 , 1 .	1.5	3