Sander Oude Elberink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Instance-Aware Semantic Segmentation of Road Furniture in Mobile Laser Scanning Data. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 17516-17529.	4.7	2
2	Enhanced trajectory estimation of mobile laser scanners using aerial images. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173, 66-78.	4.9	6
3	Railway Infrastructure Classification and Instability Identification Using Sentinel-1 SAR and Laser Scanning Data. Sensors, 2020, 20, 7108.	2.1	14
4	Using Training Samples Retrieved from a Topographic Map and Unsupervised Segmentation for the Classification of Airborne Laser Scanning Data. Remote Sensing, 2020, 12, 877.	1.8	5
5	Towards 3D Indoor Cadastre Based on Change Detection from Point Clouds. Remote Sensing, 2019, 11, 1972.	1.8	19
6	Automatic extraction of accurate 3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 41-58.	4.9	6
7	Semantic segmentation of road furniture in mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 98-113.	4.9	29
8	Context-Based Filtering of Noisy Labels for Automatic Basemap Updating From UAV Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 2731-2741.	2.3	12
9	Space Subdivision of Indoor Mobile Laser Scanning Data Based on the Scanner Trajectory. Remote Sensing, 2018, 10, 1815.	1.8	11
10	Space Subdivision in Indoor Mobile Laser Scanning Point Clouds Based on Scanline Analysis. Sensors, 2018, 18, 1838.	2.1	12
11	Pole-Like Road Furniture Detection and Decomposition in Mobile Laser Scanning Data Based on Spatial Relations. Remote Sensing, 2018, 10, 531.	1.8	30
12	Semantic Interpretation of Mobile Laser Scanner Point Clouds in Indoor Scenes Using Trajectories. Remote Sensing, 2018, 10, 1754.	1.8	34
13	Ground and Multi-Class Classification of Airborne Laser Scanner Point Clouds Using Fully Convolutional Networks. Remote Sensing, 2018, 10, 1723.	1.8	36
14	Detection of Cars in Mobile Lidar Point Clouds. , 2018, , .		2
15	An automated technique for basemap updating using UAV data. , 2017, , .		0
16	Objectâ€based classification of terrestrial laser scanning point clouds for landslide monitoring. Photogrammetric Record, 2017, 32, 377-397.	0.4	46
17	Application of Template Matching for Improving Classification of Urban Railroad Point Clouds. Sensors, 2016, 16, 2112.	2.1	20
18	Individual Tree Crown Modeling and Change Detection From Airborne Lidar Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3467-3477.	2.3	39

SANDER OUDE ELBERINK

#	Article	IF	CITATIONS
19	Automatic Extraction of Railroad Centerlines from Mobile Laser Scanning Data. Remote Sensing, 2015, 7, 5565-5583.	1.8	44
20	Detection and Classification of Changes in Buildings from Airborne Laser Scanning Data. Remote Sensing, 2015, 7, 17051-17076.	1.8	33
21	Flexible building primitives for 3D building modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 275-290.	4.9	76
22	CityGML Implementation Specifications for a Countrywide 3D Data Set. Photogrammetric Engineering and Remote Sensing, 2014, 80, 1069-1077.	0.3	9
23	A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 227-242.	4.9	78
24	Multiple-entity based classification of airborne laser scanning data in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88, 1-15.	4.9	93
25	Segment-Based Classification of Damaged Building Roofs in Aerial Laser Scanning Data. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1258-1262.	1.4	49
26	Three-dimensional modeling with national coverage: case of The Netherlands. Geo-Spatial Information Science, 2013, 16, 267-276.	2.4	11
27	Generation and Dissemination of a National Virtual 3D City and Landscape Model for the Netherlands. Photogrammetric Engineering and Remote Sensing, 2013, 79, 147-158.	0.3	21
28	Change detection of trees in urban areas using multi-temporal airborne lidar point clouds. Proceedings of SPIE, 2012, , .	0.8	9
29	Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications. Sensors, 2012, 12, 1437-1454.	2.1	1,386
30	Möglichkeiten der Extraktion von Fassadengrundlinien aus mobilen Laserscannerdaten. Photogrammetrie, Fernerkundung, Geoinformation, 2011, 2011, 97-107.	1.2	23
31	Tree modelling from mobile laser scanning dataâ€sets. Photogrammetric Record, 2011, 26, 361-372.	0.4	69
32	Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66, S28-S39.	4.9	264
33	Quality analysis on 3D building models reconstructed from airborne laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66, 157-165.	4.9	119
34	Building Reconstruction by Target Based Graph Matching on Incomplete Laser Data: Analysis and Limitations. Sensors, 2009, 9, 6101-6118.	2.1	117
35	3D information extraction from laser point clouds covering complex road junctions. Photogrammetric Record, 2009, 24, 23-36.	0.4	33
36	Re-using laser scanner data in applications for 3D topography. Lecture Notes in Geoinformation and Cartography, 2008, , 87-99.	0.5	0

#	Article	IF	CITATIONS
37	FULLY CONVOLUTIONAL NETWORKS FOR GROUND CLASSIFICATION FROM LIDAR POINT CLOUDS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-2, 231-238.	0.0	24
38	TRAINING IN INNOVATIVE TECHNOLOGIES FOR CLOSE-RANGE SENSING IN ALPINE TERRAIN. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-2, 239-246.	0.0	8
39	WHEAT EAR DETECTION IN PLOTS BY SEGMENTING MOBILE LASER SCANNER DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-2/W4, 149-156.	0.0	14
40	EXPLOITING INDOOR MOBILE LASER SCANNER TRAJECTORIES FOR SEMANTIC INTERPRETATION OF POINT CLOUDS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-2/W4, 355-362.	0.0	25
41	IQPC 2015 TRACK: TREE SEPARATION AND CLASSIFICATION IN MOBILE MAPPING LIDAR DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-3/W3, 607-612.	0.2	12
42	LOW-LEVEL TIE FEATURE EXTRACTION OF MOBILE MAPPING DATA (MLS/IMAGES) AND AERIAL IMAGERY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-3/W4, 19-26.	0.2	5
43	AUTOMATIC FEATURE DETECTION, DESCRIPTION AND MATCHING FROM MOBILE LASER SCANNING DATA AND AERIAL IMAGERY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B1, 609-616.	0.2	8
44	DERIVING 3D POINT CLOUDS FROM TERRESTRIAL PHOTOGRAPHS - COMPARISON OF DIFFERENT SENSORS AND SOFTWARE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B5, 685-692.	0.2	19
45	VEHICLE RECOGNITION IN AERIAL LIDAR POINT CLOUD BASED ON DYNAMIC TIME WARPING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-2/W4, 193-198.	0.0	4
46	SMART FUSION OF MOBILE LASER SCANNER DATA WITH LARGE SCALE TOPOGRAPHIC MAPS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-2-2020, 251-258.	0.0	0