
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555217/publications.pdf Version: 2024-02-01

YAKAI EENC

#	Article	IF	CITATIONS
1	Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chemical Society Reviews, 2015, 44, 5680-5742.	18.7	441
2	Biodegradable, Amorphous Copolyester-Urethane Networks Having Shape-Memory Properties. Angewandte Chemie - International Edition, 2005, 44, 1188-1192.	7.2	226
3	Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomaterials Science, 2017, 5, 2357-2368.	2.6	172
4	Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review. Journal of Materials Science, 2021, 56, 1064-1086.	1.7	123
5	Copolymer Networks Based on Poly(<i>ï‰</i> â€pentadecalactone) and Poly(<i>ïµ</i> â€caprolactone)Segments as a Versatile Tripleâ€Shape Polymer System. Advanced Functional Materials, 2010, 20, 3583-3594.	7.8	119
6	Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Materials Science and Engineering C, 2012, 32, 2306-2315.	3.8	114
7	Controlling the Switching Temperature of Biodegradable, Amorphous, Shape-Memory Poly(<i>rac</i> -lactide)urethane Networks by Incorporation of Different Comonomers. Biomacromolecules, 2009, 10, 975-982.	2.6	113
8	Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter, 2009, 5, 676-684.	1.2	110
9	Biodegradable Multiblock Copolymers Based on Oligodepsipeptides with Shapeâ€Memory Properties. Macromolecular Bioscience, 2009, 9, 45-54.	2.1	108
10	Biodegradable Polydepsipeptides. International Journal of Molecular Sciences, 2009, 10, 589-615.	1.8	90
11	Tannic Acid Crossâ€linked Polysaccharideâ€Based Multifunctional Hemostatic Microparticles for the Regulation of Rapid Wound Healing. Macromolecular Bioscience, 2018, 18, e1800209.	2.1	89
12	Polysaccharide-Based Lotus Seedpod Surface-Like Porous Microsphere with Precise and Controllable Micromorphology for Ultrarapid Hemostasis. ACS Applied Materials & Interfaces, 2019, 11, 46558-46571.	4.0	85
13	Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Materials Science and Engineering C, 2013, 33, 3644-3651.	3.8	76
14	Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys–Ala–Gly-peptide. Acta Biomaterialia, 2015, 20, 69-81.	4.1	70
15	Fabricating antimicrobial peptide-immobilized starch sponges for hemorrhage control and antibacterial treatment. Carbohydrate Polymers, 2019, 222, 115012.	5.1	69
16	Progress in Depsipeptideâ€Based Biomaterials. Macromolecular Bioscience, 2010, 10, 1008-1021.	2.1	68
17	Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 1499-1510.	1.7	67
18	Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation. Materials Science and Engineering C, 2015, 50, 201-209.	3.8	65

#	Article	IF	CITATIONS
19	Novel interpenetrating networks with shape-memory properties. Journal of Polymer Science Part A, 2007, 45, 768-775.	2.5	64
20	Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomaterialia, 2019, 99, 220-235.	4.1	64
21	Polysaccharide Based Hemostatic Strategy for Ultrarapid Hemostasis. Macromolecular Bioscience, 2020, 20, e1900370.	2.1	62
22	Lipase-catalyzed ring-opening polymerization of morpholine-2,5-dione derivatives: A novel route to the synthesis of poly(ester amide)s. Macromolecular Chemistry and Physics, 2000, 201, 2670-2675.	1.1	58
23	Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion. Materials Science and Engineering C, 2013, 33, 2871-2878.	3.8	54
24	CREDVW-Linked Polymeric Micelles As a Targeting Gene Transfer Vector for Selective Transfection and Proliferation of Endothelial Cells. ACS Applied Materials & Interfaces, 2015, 7, 12128-12140.	4.0	54
25	Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Advanced Healthcare Materials, 2020, 9, e2000920.	3.9	53
26	Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromolecular Rapid Communications, 1999, 20, 88-90.	2.0	52
27	Electrospun hemocompatible PU/gelatin-heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromolecular Research, 2012, 20, 347-350.	1.0	51
28	Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromolecular Research, 2013, 21, 860-869.	1.0	51
29	Regulation of the endothelialization by human vascular endothelial cells by ZNF580 gene complexed with biodegradable microparticles. Biomaterials, 2014, 35, 7133-7145.	5.7	51
30	Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. Journal of Materials Science: Materials in Medicine, 2013, 24, 61-70.	1.7	48
31	Synthesis, Aggregation-Induced Emission, and Liquid Crystalline Structure of Tetraphenylethylene – Surfactant Complex via Ionic Self-Assembly. Journal of Physical Chemistry C, 2016, 120, 27577-27586.	1.5	47
32	Multifunctional Gene Carriers with Enhanced Specific Penetration and Nucleus Accumulation to Promote Neovascularization of HUVECs in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 35613-35627.	4.0	46
33	Biofunctionalized Electrospun PCLâ€₽IBMD/SF Vascular Grafts with PEG and Cellâ€Adhesive Peptides for Endothelialization. Macromolecular Bioscience, 2019, 19, e1800386.	2.1	46
34	CAGW Peptide- and PEG-Modified Gene Carrier for Selective Gene Delivery and Promotion of Angiogenesis in HUVECs in Vivo. ACS Applied Materials & amp; Interfaces, 2017, 9, 4485-4497.	4.0	45
35	Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromolecular Research, 2013, 21, 541-549.	1.0	44
36	Co-immobilization of ACH11 antithrombotic peptide and CAG cell-adhesive peptide onto vascular grafts for improved hemocompatibility and endothelialization. Acta Biomaterialia, 2019, 97, 344-359.	4.1	44

#	Article	IF	CITATIONS
37	Fabricating poly(vinyl alcohol)/gelatin composite sponges with high absorbency and water-triggered expansion for noncompressible hemorrhage and wound healing. Journal of Materials Chemistry B, 2021, 9, 1568-1582.	2.9	44
38	Proliferation and migration of human vascular endothelial cells mediated by ZNF580 gene complexed with mPEG-b-P(MMD-co-GA)-g-PEI microparticles. Journal of Materials Chemistry B, 2014, 2, 1825.	2.9	43
39	Synthesis and characterization of poly(carbonate urethane) networks with shapeâ€memory properties. Journal of Applied Polymer Science, 2009, 112, 473-478.	1.3	42
40	REDV Peptide Conjugated Nanoparticles/pZNF580 Complexes for Actively Targeting Human Vascular Endothelial Cells. ACS Applied Materials & Interfaces, 2015, 7, 20389-20399.	4.0	42
41	Nanoparticles Complexed with Gene Vectors to Promote Proliferation of Human Vascular Endothelial Cells. Advanced Healthcare Materials, 2015, 4, 1225-1235.	3.9	41
42	Lipase Catalyzed Copolymerization of 3(S)-Isopropylmorpholine-2,5-dione andD,L-Lactide. Macromolecular Bioscience, 2004, 4, 587-590.	2.1	39
43	Targeting REDV peptide functionalized polycationic gene carrier for enhancing the transfection and migration capability of human endothelial cells. Journal of Materials Chemistry B, 2015, 3, 3379-3391.	2.9	39
44	Grafting of poly(ethylene glycol) monoacrylate onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization to control hydrophilicity. Journal of Applied Polymer Science, 2011, 119, 3717-3727.	1.3	38
45	Functionalization of Polycarbonate Surfaces by Grafting <scp>PEG</scp> and Zwitterionic Polymers with a Multicomb Structure. Macromolecular Bioscience, 2013, 13, 1681-1688.	2.1	38
46	Mixed micelles obtained by co-assembling comb-like and grafting copolymers as gene carriers for efficient gene delivery and expression in endothelial cells. Journal of Materials Chemistry B, 2017, 5, 1673-1687.	2.9	37
47	Synthesis, crystal structure, enhanced photoluminescence properties and fluoride detection ability of S-heterocyclic annulated perylene diimide-polyhedral oligosilsesquioxane dye. Journal of Materials Chemistry C, 2017, 5, 2566-2576.	2.7	36
48	PLGA/SF blend scaffolds modified with plasmid complexes for enhancing proliferation of endothelial cells. Reactive and Functional Polymers, 2015, 91-92, 19-27.	2.0	35
49	Selfâ€Assembly of Polyethylenimineâ€Modified Biodegradable Complex Micelles as Gene Transfer Vector for Proliferation of Endothelial Cells. Macromolecular Chemistry and Physics, 2014, 215, 2463-2472.	1.1	34
50	Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth. Journal of Materials Science: Materials in Medicine, 2015, 26, 5386.	1.7	34
51	Biodegradable PEI modified complex micelles as gene carriers with tunable gene transfection efficiency for ECs. Journal of Materials Chemistry B, 2016, 4, 997-1008.	2.9	34
52	Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. Journal of Materials Chemistry B, 2017, 5, 3253-3276.	2.9	34
53	Development of Ca2+-based, ion-responsive superabsorbent hydrogel for cement applications: Self-healing and compressive strength. Journal of Colloid and Interface Science, 2019, 538, 397-403.	5.0	34
54	Matrix-Metalloproteinase-Responsive Gene Delivery Surface for Enhanced in Situ Endothelialization. ACS Applied Materials & Interfaces, 2020, 12, 40121-40132.	4.0	34

#	Article	IF	CITATIONS
55	Lipase-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromolecular Chemistry and Physics, 1999, 200, 1506-1514.	1.1	33
56	Versatile polymer-based strategies for antibacterial drug delivery systems and antibacterial coatings. Journal of Materials Chemistry B, 2022, 10, 1005-1018.	2.9	33
57	Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. Journal of Materials Chemistry B, 2015, 3, 7682-7697.	2.9	32
58	Red-blood-cell-mimetic gene delivery systems for long circulation and high transfection efficiency in ECs. Journal of Materials Chemistry B, 2018, 6, 5975-5985.	2.9	32
59	Star-shaped copolymer grafted PEI and REDV as a gene carrier to improve migration of endothelial cells. Biomaterials Science, 2017, 5, 511-522.	2.6	31
60	Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels. Frontiers of Chemical Science and Engineering, 2011, 5, 392-400.	2.3	30
61	Modification of polycarbonateurethane surface with poly (ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion. Frontiers of Chemical Science and Engineering, 2014, 8, 188-196.	2.3	30
62	Electrospun PCL-PIBMD/SF blend scaffolds with plasmid complexes for endothelial cell proliferation. RSC Advances, 2017, 7, 39452-39464.	1.7	30
63	Oligohistidine and targeting peptide functionalized TAT-NLS for enhancing cellular uptake and promoting angiogenesis in vivo. Journal of Nanobiotechnology, 2018, 16, 29.	4.2	30
64	Study on oxidative degradation behaviors of polyesterurethane network. Polymer Degradation and Stability, 2006, 91, 1711-1716.	2.7	29
65	Comb-shaped polymer grafted with REDV peptide, PEG and PEI as targeting gene carrier for selective transfection of human endothelial cells. Journal of Materials Chemistry B, 2017, 5, 1408-1422.	2.9	29
66	Endothelial Cell-Mediated Gene Delivery for In Situ Accelerated Endothelialization of a Vascular Graft. ACS Applied Materials & Interfaces, 2021, 13, 16097-16105.	4.0	29
67	Synthesis of an adhesionâ€enhancing polysiloxane containing epoxy groups for additionâ€cure silicone light emitting diodes encapsulant. Polymers for Advanced Technologies, 2014, 25, 927-933.	1.6	27
68	Multi-targeting peptides for gene carriers with high transfection efficiency. Journal of Materials Chemistry B, 2017, 5, 8035-8051.	2.9	27
69	Ligand targeting and peptide functionalized polymers as non-viral carriers for gene therapy. Biomaterials Science, 2020, 8, 64-83.	2.6	27
70	Biomimetic design of amphiphilic polycations and surface grafting onto polycarbonate urethane film as effective antibacterial agents with controlled hemocompatibility. Journal of Polymer Science Part A, 2013, 51, 3166-3176.	2.5	26
71	REDV–polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells. Journal of Materials Chemistry B, 2016, 4, 3365-3376.	2.9	26
72	Lipase-catalyzed ring-opening polymerization of 6(S)-methyl-morpholine-2,5-dione. Journal of Polymer Science Part A, 2005, 43, 3030-3039.	2.5	25

#	Article	IF	CITATIONS
73	Preparation and Performance of Phenyl-Vinyl-POSS/Addition-Type Curable Silicone Rubber Hybrid Material. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 639-645.	1.2	25
74	Multitargeting Gene Delivery Systems for Enhancing the Transfection of Endothelial Cells. Macromolecular Rapid Communications, 2016, 37, 1926-1931.	2.0	25
75	Multitargeting Peptide-Functionalized Star-Shaped Copolymers with Comblike Structure and a POSS-Core To Effectively Transfect Endothelial Cells. ACS Biomaterials Science and Engineering, 2018, 4, 2155-2168.	2.6	25
76	Multifunctional gene delivery systems with targeting ligand CAGW and charge reversal function for enhanced angiogenesis. Journal of Materials Chemistry B, 2019, 7, 1906-1919.	2.9	25
77	Electrospun Poly(lactide-co-glycolide-co-3(S)-methyl-morpholine-2,5-dione) Nanofibrous Scaffolds for Tissue Engineering. Polymers, 2016, 8, 13.	2.0	24
78	Poly(lactide-co-glycolide) grafted hyaluronic acid-based electrospun fibrous hemostatic fragments as a sustainable anti-infection and immunoregulation material. Journal of Materials Chemistry B, 2019, 7, 4997-5010.	2.9	24
79	A progressively targeted gene delivery system with a pH triggered surface charge-switching ability to drive angiogenesis <i>in vivo</i> . Biomaterials Science, 2019, 7, 2061-2075.	2.6	24
80	Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy. Biomaterials Science, 2022, 10, 1883-1903.	2.6	24
81	Delivery of benzoylaconitine using biodegradable nanoparticles to suppress inflammation via regulating NF-1ºB signaling. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110980.	2.5	23
82	Hydrophilic-hydrophobic AB diblock copolymers containing poly(trimethylene carbonate) and poly(ethylene oxide) blocks. Journal of Polymer Science Part A, 2005, 43, 4819-4827.	2.5	22
83	Construction of hemocompatible polycarbonate urethane with sulfoammonium zwitterionic polyethylene glycol. Journal of Applied Polymer Science, 2011, 122, 1084-1091.	1.3	22
84	Biodegradable depsipeptide–PDO–PEG-based block copolymer micelles as nanocarriers for controlled release of doxorubicin. Reactive and Functional Polymers, 2014, 82, 89-97.	2.0	22
85	Fabrication of Siloxane Hybrid Material With High Adhesion and High Refractive Index for Light Emitting Diodes (LEDs) Encapsulation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 653-658.	1.2	22
86	Polymeric nano-carriers for on-demand delivery of genes <i>via</i> specific responses to stimuli. Journal of Materials Chemistry B, 2020, 8, 9621-9641.	2.9	22
87	Synthesis and characterization of new ABA triblock copolymers with poly[3(S)-isobutylmorpholine-2,5-dione] and poly(ethylene oxide) blocks. Macromolecular Chemistry and Physics, 1999, 200, 2276-2283.	1.1	21
88	Lipase-Catalyzed Ring-Opening Polymerization of 3(S)-sec-Butylmorpholine-2,5-dione. Macromolecular Bioscience, 2001, 1, 66-74.	2.1	21
89	Synthesis of Poly[(lactic acid)-alt- or co-((S)-aspartic acid)] from (3S,6R,S)-3-[(Benzyloxycarbonyl)methyl]-6-methylmorpholine-2,5-dione. Macromolecular Chemistry and Physics, 2002, 203, 819-824.	1.1	21
90	Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Frontiers of Chemical Engineering in China, 2010, 4, 372-381.	0.6	21

#	Article	IF	CITATIONS
91	CAGW Peptide Modified Biodegradable Cationic Copolymer for Effective Gene Delivery. Polymers, 2017, 9, 158.	2.0	21
92	Amphiphilic depsipeptideâ€based block copolymers as nanocarriers for controlled release of ibuprofen with doxorubicin. Journal of Polymer Science Part A, 2013, 51, 3213-3226.	2.5	20
93	Surface Modification of Polycarbonate Urethane with Zwitterionic Polynorbornene via Thiolâ€ene <i>Clickâ€Reaction</i> to Facilitate Cell Growth and Proliferation. Macromolecular Materials and Engineering, 2015, 300, 802-809.	1.7	20
94	Hydrophobic associated polymer "grafted onto―nanosilica as a multi-functional fluid loss agent for oil well cement under ultrahigh temperature. RSC Advances, 2016, 6, 91728-91740.	1.7	20
95	Genipin crosslinked microspheres as an effective hemostatic agent. Polymers for Advanced Technologies, 2018, 29, 2632-2642.	1.6	20
96	POSS-cored and peptide functionalized ternary gene delivery systems with enhanced endosomal escape ability for efficient intracellular delivery of plasmid DNA. Journal of Materials Chemistry B, 2018, 6, 4251-4263.	2.9	20
97	Synthesis and Characterization of New Block Copolymers with Poly(ethylene oxide) and Poly[3(S)-sec-butylmorpholine-2,5-dione] Sequences. Macromolecular Bioscience, 2001, 1, 30-39.	2.1	19
98	Manipulation of polycarbonate urethane bulk properties via incorporated zwitterionic polynorbornene for tissue engineering applications. RSC Advances, 2015, 5, 11284-11292.	1.7	19
99	Selfâ€∎dhesive epoxy modified silicone materials for light emitting diode encapsulation. Polymers for Advanced Technologies, 2017, 28, 1473-1479.	1.6	19
100	High refractive index adamantaneâ€based silicone resins for the encapsulation of lightâ€emitting diodes. Polymers for Advanced Technologies, 2018, 29, 2245-2252.	1.6	19
101	A "controlled CO release―and "pro-angiogenic gene―dually engineered stimulus-responsive nanoplatform for collaborative ischemia therapy. Chemical Engineering Journal, 2021, 424, 130430.	6.6	19
102	Alternating copolymerizations of styrene derivatives and carbon monoxide in the presence of a palladium (II) catalyst. Journal of Polymer Science Part A, 1997, 35, 1283-1291.	2.5	18
103	Biodegradable block copolymers with poly(ethylene oxide) and poly(glycolic acid-valine) blocks. Journal of Applied Polymer Science, 2002, 86, 2916-2919.	1.3	18
104	Construction of Hemocompatible and Histocompatible Surface by Grafting Antithrombotic Peptide ACH ₁₁ and Hydrophilic PEG. ACS Biomaterials Science and Engineering, 2019, 5, 2846-2857.	2.6	18
105	Cascaded bio-responsive delivery of eNOS gene and ZNF ₅₈₀ gene to collaboratively treat hindlimb ischemia <i>via</i> pro-angiogenesis and anti-inflammation. Biomaterials Science, 2020, 8, 6545-6560.	2.6	18
106	Terpolymer with rigid side chain as filtrate reducer for waterâ€based drilling fluids. Journal of Applied Polymer Science, 2021, 138, 50237.	1.3	18
107	Development and Challenges of Thermal Interface Materials: A Review. Macromolecular Materials and Engineering, 2021, 306, 2100428.	1.7	18
108	controlled heparin release from electrospun gelatin fibers. Journal of Controlled Release, 2011, 152, e28-e29.	4.8	17

#	Article	IF	CITATIONS
109	Electrospinning of polycarbonate urethane biomaterials. Frontiers of Chemical Science and Engineering, 2011, 5, 11-18.	2.3	17
110	The Influence of Zwitterionic Phospholipid Brushes Grafted via UVâ€Initiated or SIâ€ATR Polymerization on the Hemocompatibility of Polycarbonateurethane. Macromolecular Symposia, 2011, 309-310, 6-15.	0.4	17
111	Permeate Flux Curve Characteristics Analysis of Cross-Flow Vacuum Membrane Distillation. Industrial & Engineering Chemistry Research, 2012, 51, 487-494.	1.8	17
112	A Potential Nonthrombogenic Small-Diameter Vascular Scaffold with Polyurethane/Poly(ethylene) Tj ETQq0 0 0 rg 2013, 13, 1578-1582.	gBT /Over 0.9	ock 10 Tf 50 17
113	Hydrophobic associated copolymer as a wide temperature range synthetic cement retarder and its effect on cement hydration. Journal of Applied Polymer Science, 2017, 134, e45242.	1.3	17
114	Multifunctional REDV-C-TAT-C-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110510.	2.5	17
115	A PEG- <i>b</i> -poly(disulfide- <scp>l</scp> -lysine) based redox-responsive cationic polymer for efficient gene transfection. Journal of Materials Chemistry B, 2019, 7, 1893-1905.	2.9	17
116	Cyclopropenium Nanoparticles and Gene Transfection in Cells. Pharmaceutics, 2020, 12, 768.	2.0	17
117	Biodegradable polyesterurethanes with shape-memory properties for dexamethasone and aspirin controlled release. Journal of Controlled Release, 2011, 152, e21-e23.	4.8	16
118	Synthesis and characterization of hydrophilic polyesterâ€PEO networks with shapeâ€memory properties. Polymers for Advanced Technologies, 2011, 22, 2430-2438.	1.6	16
119	Fabrication and characterization of electrospun biocompatible PU/PEGMA hybrid nanofibers by in-situ UV photopolymerization. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1189-1193.	2.0	16
120	From single to a dual-gene delivery nanosystem: coordinated expression matters for boosting the neovascularization <i>in vivo</i> . Biomaterials Science, 2020, 8, 2318-2328.	2.6	16
121	5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. Materials Science and Engineering C, 2021, 119, 111553.	3.8	16
122	Controlled release of doxorubicin from amphiphilic depsipeptide–PDO–PEC-based copolymer nanosized microspheres. Reactive and Functional Polymers, 2013, 73, 1281-1289.	2.0	15
123	Ionic Selfâ€Assembled Derivative of Tetraphenylethylene: Synthesis, Enhanced Solidâ€State Emission, Liquidâ€Crystalline Structure, and Cu ²⁺ Detection Ability. ChemPhysChem, 2017, 18, 3605-3613.	1.0	15
124	Preparation of ZrO ₂ /silicone hybrid materials for LED encapsulation via in situ solâ€gel reaction. Polymers for Advanced Technologies, 2019, 30, 1818-1824.	1.6	15
125	Agmatine-grafted bioreducible poly(<scp>l</scp> -lysine) for gene delivery with low cytotoxicity and high efficiency. Journal of Materials Chemistry B, 2020, 8, 2418-2430.	2.9	15
126	Biological evaluation of degradable, stimuli-sensitive multiblock copolymers having polydepsipeptide- and poly(Îμ-caprolactone) segments in vitro. Clinical Hemorheology and Microcirculation, 2011, 48, 161-172.	0.9	14

#	Article	IF	CITATIONS
127	Evaluation of Electrospun PCL-PIBMD Meshes Modified with Plasmid Complexes in Vitro and in Vivo. Polymers, 2016, 8, 58.	2.0	14
128	Core/Shell Gene Carriers with Different Lengths of PLGA Chains to Transfect Endothelial Cells. Langmuir, 2017, 33, 13315-13325.	1.6	14
129	Zwitterionic copolymer for controlling fluid loss in Oilwell cementing: Preparation, characterization, and working mechanism. Polymer Engineering and Science, 2017, 57, 78-88.	1.5	14
130	Vertical alignment of carbon fibers under magnetic field driving to enhance the thermal conductivity of silicone composites. Polymers for Advanced Technologies, 2021, 32, 4318-4325.	1.6	14
131	Synthesis of polyketone catalyzed by Pd/C catalyst. Journal of Molecular Catalysis A, 2009, 307, 121-127.	4.8	13
132	Drug release from biodegradable polyesterurethanes with shape-memory effect. Journal of Controlled Release, 2011, 152, e20-e21.	4.8	13
133	Synthesis and characterization of biodegradable, amorphous, soft IPNs with shapeâ€memory effect. Polymers for Advanced Technologies, 2012, 23, 382-388.	1.6	13
134	Biodegradable carrier/gene complexes to mediate the transfection and proliferation of human vascular endothelial cells. Polymers for Advanced Technologies, 2015, 26, 1370-1377.	1.6	13
135	CAG W Modified Polymeric Micelles with Different Hydrophobic Cores for Efficient Gene Delivery and Capillary-like Tube Formation. ACS Biomaterials Science and Engineering, 2018, 4, 2870-2878.	2.6	13
136	A "self-accelerating endosomal escape―siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomaterials Science, 2019, 7, 3307-3319.	2.6	13
137	Biomimetic surface modification of polycarbonateurethane film via phosphorylcholine-graft for resisting platelet adhesion. Macromolecular Research, 2012, 20, 1063-1069.	1.0	12
138	Synthesis and characterization of novel copolymers based on 3(S)-methyl-morpholine-2,5-dione. Transactions of Tianjin University, 2012, 18, 315-319.	3.3	12
139	Grafting of a novel phosphorylcholine-containing vinyl monomer onto poly-carbonateurethane surfaces by ultraviolet radiation grafting polymerization. Macromolecular Research, 2012, 20, 693-702.	1.0	12
140	Co-self-assembly of cationic microparticles to deliver pEGFP-ZNF580 for promoting the transfection and migration of endothelial cells. International Journal of Nanomedicine, 2017, Volume 12, 137-149.	3.3	12
141	Superlow Dosage of Intrinsically Bioactive Zinc Metal–Organic Frameworks to Modulate Endothelial Cell Morphogenesis and Significantly Rescue Ischemic Disease. ACS Nano, 2022, 16, 1395-1408.	7.3	12
142	Polycarbonateurethane films containing complex of copper(II) catalyzed generation of nitric oxide. Journal of Applied Polymer Science, 2011, 122, 1712-1721.	1.3	11
143	Oil bleed from elastomeric thermal silicone conductive pads. Frontiers of Chemical Science and Engineering, 2016, 10, 509-516.	2.3	11
144	Design of polycationic micelles by selfâ€assembly of polyethyleneimine functionalized oligo[(<i>ε</i> â€caprolactone)â€ <i>co</i> â€glycolide] ABA block copolymers. Polymers for Advanced Technologies, 2017, 28, 1278-1284.	1.6	11

#	Article	IF	CITATIONS
145	Performance of methylphenyl hydrogen-containing silicone oils for LED encapsulation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 690-694.	1.2	11
146	Multifunctional Gene Carriers Labeled by Perylene Diimide Derivative as Fluorescent Probe for Tracking Gene Delivery. Macromolecular Rapid Communications, 2019, 40, 1800916.	2.0	11
147	Expandable, biodegradable, bioactive quaternized gelatin sponges for rapidly controlling incompressible hemorrhage and promoting wound healing. , 2022, 136, 212776.		11
148	Calcium Alcoholates of Hydroxytelechelic Poly(ethylene oxide)s as Initiators for the Ring-Opening Polymerization of 3-(S)-Isopropylmorpholine-2,5-dione. Macromolecular Chemistry and Physics, 2001, 202, 3120-3125.	1.1	10
149	Synthesis and characterization of degraded gelatin grafted poly(É›-caprolactone) copolymers. Transactions of Tianjin University, 2013, 19, 182-187.	3.3	10
150	Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer. Transactions of Tianjin University, 2013, 19, 58-65.	3.3	10
151	Biodegradable Polymers for Medical Applications. International Journal of Polymer Science, 2016, 2016, 1-2.	1.2	10
152	Synthesis, helical columnar liquid crystalline structure, and charge transporting property of perylene diimide derivative bearing oligosiloxane chains. Dyes and Pigments, 2018, 152, 139-145.	2.0	10
153	Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation. Frontiers of Chemical Science and Engineering, 2020, 14, 889-901.	2.3	10
154	Degradable Depsipeptide-Based Multiblock Copolymers with Polyester or Polyetherester Segments. International Journal of Artificial Organs, 2011, 34, 103-109.	0.7	9
155	"Green process―inspires gene delivery: Establishing positive feedback between CO2-enhanced bioactive carrier and gene expression to maximize ECs outputs for multi-pathways CLI therapy. Chemical Engineering Journal, 2021, 421, 127808.	6.6	9
156	Recent advances in inhibiting atherosclerosis and restenosis: from pathogenic factors, therapeutic molecules to nano-delivery strategies. Journal of Materials Chemistry B, 2022, 10, 1685-1708.	2.9	9
157	Preparation and characterization of phosphorylcholine glyceraldehyde grafted polycarbonateurethane films. Journal of Polymer Research, 2012, 19, 1.	1.2	8
158	Synthesis of Wellâ€Defined Dihydroxy Telechelics by (Co)polymerization of Morpholineâ€2,5â€Diones Catalyzed by Sn(IV) Alkoxide. Macromolecular Bioscience, 2018, 18, e1800257.	2.1	8
159	A two-pronged approach to regulate the behaviors of ECs and SMCs by the dual targeting-nanoparticles. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112068.	2.5	8
160	Biomimetic and responsive nanoparticles loading JQ1 for dual-targeting treatment of vascular restenosis via multiple actions. Chemical Engineering Journal, 2022, 431, 133452.	6.6	8
161	Thermothickening Behavior of Graft Copolymers Containing Poly(<i>N</i> -isopropylacrylamide- <i>co</i> - <i>N,N</i> -dimethylacrylamide) Side Chains in Aqueous Solution. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 881-890.	1.2	7
162	Biodegradable polyesterurethane networks for controlled release of aspirin. Journal of Applied Polymer Science, 2010, 116, 861-867.	1.3	6

#	Article	IF	CITATIONS
163	Synthesis of depsipeptides from L-amino acids and lactones. Frontiers of Chemical Science and Engineering, 2011, 5, 409-415.	2.3	6
164	Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer. Journal of Materials Science: Materials in Medicine, 2020, 31, 118.	1.7	6
165	Oneâ€pot synthesis of carbon dots@ZrO 2 nanoparticles with tunable solidâ€state fluorescence. Polymers for Advanced Technologies, 2020, 31, 1744-1751.	1.6	6
166	Bioabsorbable flexible elastomer of <scp>PTMCâ€bâ€PEGâ€bâ€PTMC</scp> copolymer as intestinal anastomosis scaffold. Polymers for Advanced Technologies, 2021, 32, 3633-3645.	1.6	6
167	Bovine serum albumin-based biomimetic gene complexes with specificity facilitate rapid re-endothelialization for anti-restenosis. Acta Biomaterialia, 2022, 142, 221-241.	4.1	6
168	Nitric oxide release from polycarbonate-urethane films containing copper(ii) complexes. Journal of Controlled Release, 2011, 152, e202-e204.	4.8	5
169	Polyesterâ€Hydrophilic PEO Networks as Multifunctional Biomaterials. Macromolecular Symposia, 2011, 306-307, 18-26.	0.4	5
170	Preparation and Investigation of High-Efficiency Antibacterial Liquid Dishwashing Detergent. Transactions of Tianjin University, 2019, 25, 322-329.	3.3	5
171	Oligoglycine and fluoropolymer functionalized enzyme-responsive gene delivery surface for rapid in situ endothelialization of vascular grafts. Applied Materials Today, 2022, 27, 101476.	2.3	5
172	Synthesis and characterization of HDI/MDI-polycarbonate urethanes. Transactions of Tianjin University, 2010, 16, 317-321.	3.3	4
173	Unexpected Amplification of Synergistic Gene Expression to Boom Vascular Flow in Advantageous Dual-Gene Co-expression Plasmid Delivery Systems over Physically Mixed Strategy. ACS Applied Bio Materials, 2020, 3, 7228-7235.	2.3	4
174	Biomimetic Hemocompatible Nanofibrous Scaffolds as Potential Small-Diameter Blood Vessels by Bilayering Electrospun Technique. Advanced Materials Research, 0, 306-307, 1627-1630.	0.3	3
175	PEI modified biodegradable complex micelles as gene transfer vector for proliferation of ECs. Journal of Controlled Release, 2015, 213, e60.	4.8	3
176	CAGW and TATâ€NLS peptides functionalized multitargeting gene delivery system with high transfection efficiency. Polymers for Advanced Technologies, 2019, 30, 2567-2576.	1.6	3
177	Surface Modification of Polycarbonateurethane by Grafting Phosphorylcholine Glyceraldehydes for Improving Hemocompatibility. Materials Research Society Symposia Proceedings, 2012, 1403, 61.	0.1	2
178	Ionic liquid-complex Pd/C system as catalyst for copolymerization of CO and styrene. Transactions of Tianjin University, 2014, 20, 48-53.	3.3	2
179	PEI- g -P(LA- co -MMD)- g -PEI nanoparticles as gene carriers to promote the proliferation of human vascular endothelial cells. Journal of Controlled Release, 2015, 213, e89-e90.	4.8	2
180	REDV-linked biodegradable polymeric micelles as the transfer vector of ZNF580 for the proliferation of endothelial cells. Journal of Controlled Release, 2015, 213, e123.	4.8	2

#	Article	IF	CITATIONS
181	Synthesis and Characterization of Multiblock Poly(Ester-Amide-Urethane)s. MRS Advances, 2017, 2, 2551-2559.	0.5	2
182	Bioreducible cationic random copolymer for gene delivery. Polymers for Advanced Technologies, 2020, 31, 2378.	1.6	2
183	POSS-containing polynorbornene with pendant perylene diimide: from a unique supramolecular structure to tunable luminescence properties. Journal of Materials Chemistry C, 2022, 10, 8791-8796.	2.7	2
184	Copolymerization of carbon monoxide and styrene with the Nd(III)-Cu(II) catalyst. Journal of Applied Polymer Science, 2001, 82, 8-13.	1.3	1
185	Grafting Biomimetic Phospholipid Zwitterionic Brushes onto Polycarbonateurethane for Improving Hemocompatibility. Advanced Materials Research, 0, 306-307, 3-6.	0.3	1
186	Lipase-Catalyzed Ring-Opening Polymerization of 3(S)-sec-Butylmorpholine-2,5-dione. Macromolecular Bioscience, 2001, 1, 66-74.	2.1	1
187	Synthesis of polymers with alkyaminopyridine functions as a supernucleophilic reagent. Journal of Applied Polymer Science, 1998, 69, 2303-2304.	1.3	0
188	Biodegradable copolymers based on poly(ethylene oxide), polylactide and polydepsipeptide sequences with functional groups. E-Polymers, 2001, 1, .	1.3	0
189	Biomimetic Hemo-compatible Surfaces of Polyurethane by Grafting Copolymer Brushes of Poly(ethylene glycol) and Poly(phosphorylcholine methacrylate). Materials Research Society Symposia Proceedings, 2012, 1403, 220.	0.1	0