
Mehran Mostafavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced absorption in quartz by picosecond pulse of 8 MeV electrons. Radiation Physics and Chemistry, 2022, 190, 109833.	1.4	0
2	Modulation of the Directionality of Hole Transfer between the Base and the Sugar-Phosphate Backbone in DNA with the Number of Sulfur Atoms in the Phosphate Group. Journal of Physical Chemistry B, 2022, 126, 430-442.	1.2	2
3	Presolvated electron reactivity towards CO ₂ and N ₂ O in water. Physical Chemistry Chemical Physics, 2021, 23, 5804-5808.	1.3	5
4	The mystery of sub-picosecond charge transfer following irradiation of hydrated uridine monophosphate. Physical Chemistry Chemical Physics, 2021, 23, 21148-21162.	1.3	10
5	Confined water radiolysis in aluminosilicate nanotubes: the importance of charge separation effects. Nanoscale, 2021, 13, 3092-3105.	2.8	9
6	Real-Time Observation of Solvation Dynamics of Electron in Actinide Extraction Binary Solutions of Water and <i>n</i> -Tributyl Phosphate. Journal of Physical Chemistry B, 2021, 125, 3843-3849.	1.2	6
7	Selective Oxidation of Transient Organic Radicals in the Presence of Gold Nanoparticles. Nanomaterials, 2021, 11, 727.	1.9	6
8	Reaction Mechanisms of the Degradation of Fluoroethylene Carbonate, an Additive of Lithiumâ€lon Batteries, Unraveled by Radiation Chemistry. Chemistry - A European Journal, 2021, 27, 8185-8194.	1.7	9
9	Radiolytic Approach for Efficient, Selective and Catalystâ€free CO 2 Conversion at Room Temperature. ChemPhysChem, 2021, 22, 1900-1906.	1.0	9
10	Quasi-Free Electron-Mediated Radiation Sensitization by C5-Halopyrimidines. Journal of Physical Chemistry A, 2021, 125, 7967-7975.	1.1	7
11	Anisotropic Time-Resolved Dynamics of Crystal Growth Induced by a Single Laser Pulse Nucleation. Crystal Growth and Design, 2021, 21, 799-808.	1.4	3
12	Dose Rate Effects in Fluorescence Chemical Dosimeters Exposed to Picosecond Electron Pulses: An Accurate Measurement of Low Doses at High Dose Rates. Radiation Research, 2021, 197, .	0.7	2
13	Mechanism of organic radicals' oxidation catalysed by gold nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 26494-26500.	1.3	5
14	Mechanisms of metal nanoparticles nucleation and growth studied by radiolysis. Radiation Physics and Chemistry, 2020, 169, 107952.	1.4	39
15	Hotâ€Electron Photodynamics in Silverâ€Containing BEAâ€Type Nanozeolite Studied by Femtosecond Transient Absorption Spectroscopy. ChemPhysChem, 2020, 21, 2634-2643.	1.0	2
16	One Way Traffic: Baseâ€ŧoâ€Backbone Hole Transfer in Nucleoside Phosphorodithioate. Chemistry - A European Journal, 2020, 26, 9407-9407.	1.7	0
17	Hydrated electrons induce the formation of interstrand cross-links in DNA modified by cisplatin adducts. Journal of Radiation Research, 2020, 61, 343-351.	0.8	2
18	On the Primary Water Radicals' Production in the Presence of Gold Nanoparticles: Electron Pulse Radiolysis Study. Nanomaterials, 2020, 10, 2478.	1.9	9

#	Article	IF	CITATIONS
19	Oxidation of Silver Cyanide Ag(CN) ₂ [–] by the OH Radical: From <i>Ab Initio</i> Calculation to Molecular Simulation and to Experiment. Journal of Physical Chemistry A, 2020, 124, 10787-10798.	1.1	2
20	Pulse radiolysis study on the reactivity of NO ₃ Ë™ radical toward uranous(<scp>iv</scp>), hydrazinium nitrate and hydroxyl ammonium nitrate at room temperature and at 45 °C. Physical Chemistry Chemical Physics, 2020, 22, 5188-5197.	1.3	7
21	One Way Traffic: Baseâ€ŧoâ€Backbone Hole Transfer in Nucleoside Phosphorodithioate. Chemistry - A European Journal, 2020, 26, 9495-9505.	1.7	4
22	Key Role of the Oxidized Citrate-Free Radical in the Nucleation Mechanism of the Metal Nanoparticle Turkevich Synthesis. Journal of Physical Chemistry C, 2019, 123, 22624-22633.	1.5	10
23	Mechanism of (SCN) ₂ ^{·–} Formation and Decay in Neutral and Basic KSCN Solution under Irradiation from a Pico- to Microsecond Range. Journal of Physical Chemistry B, 2019, 123, 6599-6608.	1.2	6
24	Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides. International Journal of Molecular Sciences, 2019, 20, 4963.	1.8	26
25	Observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution. Nature Communications, 2019, 10, 102.	5.8	55
26	γ-Radiolysis preparation of nanometer-sized cadmium sulphide quantum dots stabilized in nanozeolite X and ZSM-5. New Journal of Chemistry, 2018, 42, 5465-5470.	1.4	2
27	Direct observation of the oxidation of DNA bases by phosphate radicals formed under radiation: a model of the backbone-to-base hole transfer. Physical Chemistry Chemical Physics, 2018, 20, 14927-14937.	1.3	20
28	Decoding the Three-Pronged Mechanism of NO ₃ [•] Radical Formation in HNO ₃ Solutions at 22 and 80 °C Using Picosecond Pulse Radiolysis. Journal of Physical Chemistry B, 2018, 122, 2121-2129.	1.2	17
29	Ultrafast Chemistry of Water Radical Cation, H2O•+, in Aqueous Solutions. Molecules, 2018, 23, 244.	1.7	67
30	Time-dependent yield of the hydrated electron and the hydroxyl radical in D ₂ O: a picosecond pulse radiolysis study. Physical Chemistry Chemical Physics, 2018, 20, 15671-15679.	1.3	25
31	Naked Gold Nanoparticles and hot Electrons in Water. Scientific Reports, 2018, 8, 7258.	1.6	8
32	Ultrafast Electron Attachment and Hole Transfer Following Ionizing Radiation of Aqueous Uridine Monophosphate. Journal of Physical Chemistry Letters, 2018, 9, 5105-5109.	2.1	26
33	Picosecond Pulse Radiolysis Study on the Radiation-Induced Reactions in Neat Tributyl Phosphate. Journal of Physical Chemistry B, 2018, 122, 7134-7142.	1.2	11
34	Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay mineral. RSC Advances, 2017, 7, 526-534.	1.7	47
35	Degradation of an Ethylene Carbonate/Diethyl Carbonate Mixture by Using Ionizing Radiation. ChemPhysChem, 2017, 18, 2799-2806.	1.0	19
36	Synthesis of Metal Nanoparticles and Patterning in Polymeric Films Induced by Electron Nanobeam. Journal of Physical Chemistry C, 2017, 121, 5335-5340.	1.5	2

#	Article	IF	CITATIONS
37	Ultra-fast charge migration competes with proton transfer in the early chemistry of H ₂ OË™ ⁺ . Physical Chemistry Chemical Physics, 2017, 19, 2894-2899.	1.3	17
38	Observation and Simulation of Transient Anion Oligomers (LiClO4)n– (n = 1–4) in Diethyl Carbonate LiClO4 Solutions. Journal of Physical Chemistry B, 2017, 121, 7464-7472.	1.2	1
39	Effect of the solvation state of electron in dissociative electron attachment reaction in aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 23068-23077.	1.3	10
40	Reactivity of prehydrated electrons toward nucleobases and nucleotides in aqueous solution. Science Advances, 2017, 3, e1701669.	4.7	67
41	Decay Mechanism of NO ₃ [•] Radical in Highly Concentrated Nitrate and Nitric Acidic Solutions in the Absence and Presence of Hydrazine. Journal of Physical Chemistry B, 2016, 120, 5008-5014.	1.2	26
42	Role of PF6â^' in the radiolytical and electrochemical degradation of propylene carbonate solutions. Journal of Power Sources, 2016, 326, 285-295.	4.0	16
43	Ultrafast Scavenging of the Precursor of H [•] Atom, (e [–] ,) Tj ETQq1 1 0.784314 rgBT 9060-9066.	/Overlock 1.2	10 Tf 50 50 9
44	Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study. Radiation Research, 2016, 186, 650-658.	0.7	4
45	Identification of Transient Radical Anions (LiClO ₄) _{<i>n</i>} [–] (<i>n</i> = 1–3) in THF Solutions: Experimental and Theoretical Investigation on Electron Localization in Oligomers. Journal of Physical Chemistry B, 2016, 120, 773-784.	1.2	11
46	Transient electrochemistry: beyond simply temporal resolution. Chemical Communications, 2016, 52, 251-263.	2.2	42
47	Picosecond Pulse Radiolysis of Propylene Carbonate as a Solute in Water and as a Solvent. Journal of Physical Chemistry B, 2016, 120, 2388-2396.	1.2	6
48	Picosecond Pulse Radiolysis of Highly Concentrated Carbonate Solutions. Journal of Physical Chemistry B, 2016, 120, 2434-2439.	1.2	10
49	Ultrafast Decay of the Solvated Electron in a Neat Polar Solvent: The Unusual Case of Propylene Carbonate. Journal of Physical Chemistry Letters, 2016, 7, 186-190.	2.1	8
50	Oxidation and/or reduction of manganese species by γ-ray and He2+ particle irradiation in highly concentrated carbonate media. Radiation Physics and Chemistry, 2016, 119, 142-150.	1.4	5
51	Electrolytes Ageing in Lithiumâ€ion Batteries: A Mechanistic Study from Picosecond to Long Timescales. ChemSusChem, 2015, 8, 3605-3616.	3.6	21
52	Deciphering the reaction between a hydrated electron and a hydronium ion at elevated temperatures. Physical Chemistry Chemical Physics, 2015, 17, 22934-22939.	1.3	1
53	Picosecond Pulse Radiolysis of Highly Concentrated Phosphoric Acid Solutions: Mechanism of Phosphate Radical Formation. Journal of Physical Chemistry B, 2015, 119, 7180-7185.	1.2	22
54	Radiosensitization of DNA by Cisplatin Adducts Results from an Increase in the Rate Constant for the Reaction with Hydrated Electrons and Formation of Pt ^I . Journal of Physical Chemistry B, 2015, 119, 9496-9500.	1.2	17

#	Article	IF	CITATIONS
55	Scavenging the Water Cation in Concentrated Acidic Solutions. Journal of Physical Chemistry A, 2015, 119, 10629-10636.	1.1	15
56	Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry. Chemical Communications, 2015, 51, 9089-9092.	2.2	5
57	Unexpected Ultrafast Silver Ion Reduction: Dynamics Driven by the Solvent Structure. Journal of Physical Chemistry B, 2015, 119, 10096-10101.	1.2	18
58	State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water. Environmental Sciences: Processes and Impacts, 2014, 16, 2472-2476.	1.7	14
59	Direct Evidence for Transient Pair Formation between a Solvated Electron and H ₃ O ⁺ Observed by Picosecond Pulse Radiolysis. Journal of Physical Chemistry Letters, 2014, 5, 2219-2223.	2.1	22
60	Capturing the Formation of Sub-nanometer Sized CdS Clusters in LTL Zeolite. Journal of Physical Chemistry C, 2014, 118, 6324-6334.	1.5	13
61	Electron Transfer at Oxide/Water Interfaces Induced by Ionizing Radiation. Journal of Physical Chemistry C, 2014, 118, 7865-7873.	1.5	31
62	Reactivity of the Strongest Oxidizing Species in Aqueous Solutions: The Short-Lived Radical Cation H ₂ O ^{•+} . Journal of Physical Chemistry Letters, 2014, 5, 258-261.	2.1	40
63	Picosecond Pulse Radiolysis of Highly Concentrated Sulfuric Acid Solutions: Evidence for the Oxidation Reactivity of Radical Cation H ₂ O ^{•+} . Journal of Physical Chemistry A, 2014, 118, 4030-4037.	1.1	18
64	Photoreduction of Ag+ by diethylaniline in colloidal zeolite nanocrystals. Microporous and Mesoporous Materials, 2014, 194, 183-189.	2.2	11
65	A Broadband Ultrafast Transient Absorption Spectrometer Covering the Range from Near-Infrared (NIR) down to Green. Applied Spectroscopy, 2014, 68, 1137-1147.	1.2	16
66	Radiation-induced synthesis of metal nanoparticles in ethers THF and PGMEA. Radiation Physics and Chemistry, 2013, 91, 148-155.	1.4	15
67	Oxidation of Bromide Ions by Hydroxyl Radicals: Spectral Characterization of the Intermediate BrOH ^{•–} . Journal of Physical Chemistry A, 2013, 117, 877-887.	1.1	36
68	Concomitant transient electrochemical and spectroscopic detection with electron pulse radiolysis. Electrochemistry Communications, 2013, 35, 149-151.	2.3	5
69	Spur Reactions Observed by Picosecond Pulse Radiolysis in Highly Concentrated Bromide Aqueous Solutions. Journal of Physical Chemistry A, 2013, 117, 2287-2293.	1.1	19
70	Picosecond Pulse Radiolysis of the Liquid Diethyl Carbonate. Journal of Physical Chemistry A, 2013, 117, 10801-10810.	1.1	18
71	Reduction of Earth Alkaline Metal Salts in THF Solution Studied by Picosecond Pulse Radiolysis. Journal of Physical Chemistry A, 2013, 117, 14048-14055.	1.1	5
72	Picosecond Pulse Radiolysis Study of Highly Concentrated Nitric Acid Solutions: Formation Mechanism of NO ₃ [•] Radical. Journal of Physical Chemistry A, 2012, 116, 7302-7307.	1.1	39

#	Article	IF	CITATIONS
73	Transient absorption induced by a picosecond electron pulse in the fused silica windows of an optical cell. Radiation Physics and Chemistry, 2012, 81, 1715-1719.	1.4	23
74	Homogeneous Nucleation-Growth Dynamics Induced by Single Laser Pulse in Supersaturated Solutions. Crystal Growth and Design, 2012, 12, 5980-5985.	1.4	15
75	Competition Reactions of H ₂ O ^{•+} Radical in Concentrated Cl [–] Aqueous Solutions: Picosecond Pulse Radiolysis Study. Journal of Physical Chemistry A, 2012, 116, 11509-11518.	1.1	33
76	Picosecond Pulse Radiolysis Study on the Distance Dependent Reaction of the Solvated Electron with Organic Molecules in Ethylene Glycol. Journal of Physical Chemistry A, 2012, 116, 11989-11996.	1.1	6
77	Direct and Indirect Radiolytic Effects in Highly Concentrated Aqueous Solutions of Bromide. Journal of Physical Chemistry A, 2011, 115, 4326-4333.	1.1	20
78	Temperature Dependent Absorption Spectra of Br ^{â^'} , Br ₂ ^{•â^'} , and Br ₃ ^{â^'} in Aqueous Solutions. Journal of Physical Chemistry A, 2011, 115, 4241-4247.	1.1	13
79	Time-Dependent Radiolytic Yield of OH [•] Radical Studied by Picosecond Pulse Radiolysis. Journal of Physical Chemistry A, 2011, 115, 12212-12216.	1.1	43
80	Mechanism of Trivalent Gold Reduction and Reactivity of Transient Divalent and Monovalent Gold Ions Studied by Gamma and Pulse Radiolysis. Journal of Physical Chemistry A, 2011, 115, 383-391.	1.1	67
81	Picosecond Pulse Radiolysis of Direct and Indirect Radiolytic Effects in Highly Concentrated Halide Aqueous Solutions. Journal of Physical Chemistry A, 2011, 115, 9151-9159.	1.1	31
82	H2 production by Î ³ and He ions water radiolysis, effect of presence TiO2 nanoparticles. International Journal of Hydrogen Energy, 2011, 36, 14342-14348.	3.8	24
83	An Overview of Solvated Electrons: Recent Advances. , 2010, , 21-58.		12
84	Bimetallic Au-Pt nanoparticles synthesized by radiolysis: Application in electro-catalysis. Gold Bulletin, 2010, 43, 49-56.	3.2	59
85	Solvated Electron Scavenging by Metal Cations: A Microscopic Picture Derived from the Transient Effect. , 2010, , .		Ο
86	Subnanometer CdS Clusters Self-Confined in MFI-Type Zeolite Nanoparticles and Thin Films. Langmuir, 2010, 26, 4459-4464.	1.6	14
87	Elucidation of Pt Clusters in the Micropores of Zeolite Nanoparticles Assembled in Thin Films. Journal of Physical Chemistry C, 2010, 114, 20974-20982.	1.5	31
88	Radiolytic Yield of U ^{IV} Oxidation into U ^{VI} : A New Mechanism for U ^V Reactivity in Acidic Solution. Journal of Physical Chemistry A, 2010, 114, 2080-2085.	1.1	11
89	Distance Dependence of the Reaction Rate for the Reduction of Metal Cations by Solvated Electrons: A Picosecond Pulse Radiolysis Study. Journal of Physical Chemistry A, 2010, 114, 12042-12051.	1.1	28
90	First Observation of Picosecond Kinetics of Hydrated Electrons in Supercritical Water. Journal of Physical Chemistry Letters, 2010, 1, 331-335.	2.1	44

#	Article	IF	CITATIONS
91	Ultrafast Pulse Radiolysis Methods. , 2010, , 121-160.		14
92	Preparation of Colloidal BEA Zeolite Functionalized with Pd Aggregates as a Precursor for Low Dimensionality Sensing Layer. Sensor Letters, 2010, 8, 497-501.	0.4	6
93	Time-Resolved Study on Nonhomogeneous Chemistry Induced by Ionizing Radiation with Low Linear Energy Transfer in Water and Polar Solvents at Room Temperature. , 2010, , 289-324.		3
94	Non-invasive single bunch monitoring for ps pulse radiolysis. Radiation Physics and Chemistry, 2009, 78, 1099-1101.	1.4	13
95	Nanosecond probing of the early nucleation steps of silver atoms in colloidal zeolite by pulse radiolysis and flash photolysis techniques. Research on Chemical Intermediates, 2009, 35, 379-388.	1.3	11
96	Single shot linear detection of 0.01–10 THz electromagnetic fields. Applied Physics B: Lasers and Optics, 2009, 94, 95-101.	1.1	31
97	Radiolytic formation of tribromine ion Br3â^' in aqueous solutions, a system for steady-state dosimetry. Radiation Physics and Chemistry, 2009, 78, 106-111.	1.4	23
98	Structural and Optical Properties of PbS Nanoparticles Synthesized by the Radiolytic Method. Journal of Physical Chemistry C, 2009, 113, 8050-8057.	1.5	59
99	Pulse Radiolysis Studies on the Temperature-Dependent Spectrum and the Time-Dependent Yield of Solvated Electron in Propane-1,2,3-triol. Journal of Physical Chemistry A, 2009, 113, 12193-12198.	1.1	7
100	Aqueous Solution of UCl ₆ ^{2â^'} in O ₂ Saturated Acidic Medium: An Efficient System To Scavenge All Primary Radicals in Spurs Produced by Irradiation. Journal of Physical Chemistry A, 2009, 113, 949-951.	1.1	4
101	Single Shot Linear Detection of THz Electromagnetic Fields on the Fs to Ps Scale. Springer Series in Chemical Physics, 2009, , 669-671.	0.2	0
102	Au-Fe system: application in electro-catalysis. Gold Bulletin, 2008, 41, 98-104.	3.2	14
103	Temperature effect on the absorption spectrum of the hydrated electron paired with a metallic cation in deuterated water. Radiation Physics and Chemistry, 2008, 77, 1198-1202.	1.4	6
104	Comparison of solvation dynamics of electrons in four polyols. Radiation Physics and Chemistry, 2008, 77, 1183-1189.	1.4	5
105	Scavenging of <mml:math si8.gif<br="" xmlns:mml="http://www.w3.org/1998/Math/MathML_altimg=">display="inline" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow><mml: and OH radicals in concentrated HCl and NaCl aqueous solutions. Chemical Physics Letters, 2008, 460,</mml: </mml:msubsup></mml:mrow></mml:math>	mro we > < m	ml: ng text>s<
106	461-465. Formation and solvation dynamics of electrons in polyols. Journal of Molecular Liquids, 2008, 141, 124-129.	2.3	9
107	Solvation Dynamics of Electron Produced by Two-Photon Ionization of Liquid Polyols. III. Glycerol. Journal of Physical Chemistry A, 2008, 112, 1880-1886.	1.1	18
108	Palladium nanostructures synthesized by radiolysis or by photoreduction. New Journal of Chemistry, 2008, 32, 1403.	1.4	31

#	Article	IF	CITATIONS
109	Solvation Dynamics of Electron Produced by Two-Photon Ionization of Liquid Polyols. II. Propanediols. Journal of Physical Chemistry A, 2007, 111, 4902-4913.	1.1	18
110	Temperature Effect on the Absorption Spectrum of the Hydrated Electron Paired with a Lithium Cation in Deuterated Water. Journal of Physical Chemistry A, 2007, 111, 3548-3553.	1.1	11
111	Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols. Nuclear Science and Techniques/Hewuli, 2007, 18, 2-9.	1.3	2
112	Kinetics study of the solvated electron decay in THF using laser-synchronised picosecond electron pulse. Nuclear Science and Techniques/Hewuli, 2007, 18, 10-15.	1.3	4
113	Diverse copper clusters confined in microporous nanocrystals. Sensors and Actuators B: Chemical, 2007, 126, 338-343.	4.0	13
114	Colloidal Zeolites as Host Matrix for Copper Nanoclusters. Chemistry of Materials, 2006, 18, 3373-3380.	3.2	33
115	Solvation Dynamics of the Electron Produced by Two-Photon Ionization of Liquid Polyols. 1. Ethylene Glycol. Journal of Physical Chemistry A, 2006, 110, 1705-1717.	1.1	26
116	Time-Dependent Radiolytic Yields of the Solvated Electrons in 1,2-Ethanediol, 1,2-Propanediol, and 1,3-Propanediol from Picosecond to Microsecond. Journal of Physical Chemistry A, 2006, 110, 11404-11410.	1.1	15
117	Bimetallic Au-Pd and Ag-Pd Clusters Synthesised by \$gamma \$ or Electron Beam Radiolysis and Study of the Reactivity/Structure Relationships in the Selective Hydrogenation of Buta-1,3-Diene. Oil and Gas Science and Technology, 2006, 61, 789-797.	1.4	59
118	Radiolytic synthesis and optical properties of ultra-small stabilized ZnS nanoparticles. Chemical Physics Letters, 2006, 422, 25-29.	1.2	68
119	Geminate recombination measurements of solvated electron in THF using laser-synchronized picosecond electron pulse. Chemical Physics Letters, 2006, 423, 30-34.	1.2	28
120	Hydrated electron decay measurements with picosecond pulse radiolysis at elevated temperatures up to 350°C. Chemical Physics Letters, 2006, 424, 77-81.	1.2	21
121	Radiolytic reduction of Fe(II) in 2-propanol. Chemical Physics Letters, 2006, 431, 83-87.	1.2	14
122	Time-resolved spectroscopy at the picosecond laser-triggered electron accelerator ELYSE. Radiation Physics and Chemistry, 2006, 75, 1024-1033.	1.4	81
123	Absolute calibration for a broad range single shot electron spectrometer. Review of Scientific Instruments, 2006, 77, 103301.	0.6	124
124	Comparative study of metal clusters induced in aqueous solutions by Î ³ -rays, electron or C6+ ion beam irradiation. Radiation Physics and Chemistry, 2005, 72, 575-586.	1.4	82
125	Absorption spectrum of the hydrated electron paired with nonreactive metal cations. Radiation Physics and Chemistry, 2005, 74, 288-296.	1.4	29
126	ELYSE—A picosecond electron accelerator for pulse radiolysis research. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 539, 527-539.	0.7	100

#	Article	IF	CITATIONS
127	Temperature dependence of the solvated electron absorption spectra in propanediols. Chemical Physics Letters, 2005, 402, 192-196.	1.2	13
128	Molecular dynamics simulations of the temperature and density dependence of the absorption spectra of hydrated electron and solvated silver atom in water. Chemical Physics Letters, 2005, 409, 219-223.	1.2	14
129	Radiolysis of silver ion solutions in ethylene glycol: solvated electron and radical scavenging yields. Radiation Physics and Chemistry, 2005, 72, 111-118.	1.4	69
130	Temperature-dependent absorption spectra of the solvated electron in ethylene glycol at 100 atm studied by pulse radiolysis from 296 to 598 K. Chemical Physics Letters, 2004, 384, 52-55.	1.2	19
131	Raman scattering from single Ag aggregates in presence of EDTA. Chemical Physics Letters, 2004, 386, 244-247.	1.2	26
132	Formation and geminate recombination of solvated electron upon two-photon ionisation of ethylene glycol. Chemical Physics Letters, 2004, 394, 313-317.	1.2	10
133	First Observation of Electron Paired with Divalent and Trivalent Nonreactive Metal Cations in Water. Journal of Physical Chemistry A, 2004, 108, 6817-6819.	1.1	16
134	Pulse Radiolysis Study of Solvated Electron Pairing with Alkaline Earth Metals in Tetrahydrofuran. 3. Splitting of p-Like Excited States of Solvated Electron Perturbed by Metal Cations. Journal of Physical Chemistry A, 2004, 108, 987-995.	1.1	11
135	Solvation dynamics of electron in ethylene glycol at 300 K. , 2004, , 241-244.		6
136	Signal Raman de molécules uniques en présence d'agrégats d'argent structurés. European Physical Journal Special Topics, 2004, 119, 205-206.	0.2	0
137	Solvated Electron Pairing with Earth Alkaline Metals in THF 2Reactivity of the (MgII, es-) Pair with Aromatic and Halogenated Hydrocarbon Compounds. Journal of Physical Chemistry A, 2003, 107, 6587-6593.	1.1	17
138	Solvated Electron Pairing with Earth Alkaline Metals in THF. 1. Formation and Structure of the Pair with Divalent Magnesium. Journal of Physical Chemistry A, 2003, 107, 1506-1516.	1.1	23
139	L'accélérateur d'électrons picoseconde ELYSE ÃÂOrsay. European Physical Journal Special Topics, 2003, 108, 243-245.	0.2	5
140	Charged Particle and Photon Interactions in Metal Clusters and Photographic Systems Studies. , 2003, , .		0
141	Pulse Radiolysis Study of Absorption Spectra of Ag0 and Ag2+ in Water from Room Temperature up to 380 °C. Journal of Physical Chemistry A, 2002, 106, 3123-3127.	1.1	43
142	Transient and Stable Silver Clusters Induced by Radiolysis in Methanol. Journal of Physical Chemistry A, 2002, 106, 10184-10194.	1.1	68
143	Preferential Solvation of Coumarin 153The Role of Hydrogen Bonding. Journal of Physical Chemistry A, 2002, 106, 1708-1713.	1.1	107
144	Optical limitation induced by gold clusters: Mechanism and efficiency. Physical Chemistry Chemical Physics, 2001, 3, 4965-4971.	1.3	93

#	Article	IF	CITATIONS
145	Femtochemistry of the Hydrated Electron at Decimolar Concentration. Journal of Physical Chemistry A, 2001, 105, 11400-11406.	1.1	69
146	Nanosecond kinetics of hydrated electrons upon water photolysis by high intensity femtosecond UV pulses. Research on Chemical Intermediates, 2001, 27, 901-910.	1.3	14
147	Reactivity of the solvated electron toward divalent magnesium. Chemical Physics Letters, 2001, 335, 363-368.	1.2	13
148	Radiation chemistry of nanocolloids and clusters. Studies in Physical and Theoretical Chemistry, 2001, , 411-452.	0.0	40
149	Interaction of terawatt laser pulses with neat water. Springer Series in Chemical Physics, 2001, , 536-538.	0.2	3
150	Dose rate effect on size of CdS clusters induced by irradiation. Radiation Physics and Chemistry, 2000, 59, 49-59.	1.4	67
151	7 Radiation chemistry. Annual Reports on the Progress of Chemistry Section C, 2000, 96, 225-295.	4.4	15
152	Spectral Properties and Redox Potentials of Silver Atoms Complexed by Chloride Ions in Aqueous Solution. Journal of Physical Chemistry B, 2000, 104, 6233-6239.	1.2	35
153	Optical Limitation induced by Gold Clusters. 1. Size Effect. Journal of Physical Chemistry B, 2000, 104, 6133-6137.	1.2	217
154	Radiolytic formation of bilayered Ptcore/Aushell and Aucore/Ptshell clusters in aqueous solution. Radiation Physics and Chemistry, 1999, 54, 463-473.	1.4	33
155	Transient Effect in Fluorescence Quenching by Electron Transfer. 4. Long-Range Electron Transfer in a Nonpolar Solvent. Journal of Physical Chemistry A, 1999, 103, 5882-5888.	1.1	52
156	Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry, 1998, 22, 1239-1255.	1.4	506
157	Dose Rate Effects on Radiolytic Synthesis of Goldâ~'Silver Bimetallic Clusters in Solution. Journal of Physical Chemistry B, 1998, 102, 4310-4321.	1.2	268
158	Kinetics of Electron Transfer in Solution Catalyzed by Metal Clusters. Advances in Chemistry Series, 1998, , 293-314.	0.6	5
159	Growth and Reactivity of Silver Clusters in Cyanide Solution. Journal of Physical Chemistry B, 1997, 101, 3512-3516.	1.2	40
160	Coalescence and Reactivity of Goldâ ´`Silver Bimetallic Clusters in Cyanide Solution. Journal of Physical Chemistry B, 1997, 101, 3517-3522.	1.2	33
161	UV-Absorption Observation of the Silver Bromide Growth from a Single Molecule to the Crystal in Solution. Journal of Physical Chemistry B, 1997, 101, 8443-8448.	1.2	18
162	Radiolytic reduction of Ag(CN)22â^' solution: Ligand effect on the redox potential. Radiation Physics and Chemistry, 1997, 49, 459-464.	1.4	15

#	Article	IF	CITATIONS
163	EDTA and CN- Complexing Effect on the Kinetics, Spectral Properties, and Redox Properties of Ag10 and Ag2+ in Aqueous Solution. The Journal of Physical Chemistry, 1996, 100, 10187-10193.	2.9	38
164	Bimetallic Agî—,Pt and Auî—,Pt aggregates synthesized by radiolysis. Radiation Physics and Chemistry, 1996, 47, 275-279.	1.4	120
165	Reduction of Agl1(NH3)2+ to Ag01(NH3)2 in Solution. Redox Potential and Spectral Study. The Journal of Physical Chemistry, 1996, 100, 12472-12476.	2.9	60
166	Ligand effects on solvated metal cluster properties. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1996, 93, 1828-1842.	0.2	10
167	Kinetics of cluster growth by aggregation. Zeitschrift FÃ1⁄4r Physik D-Atoms Molecules and Clusters, 1995, 34, 47-56.	1.0	12
168	Kinetics of cluster aggregation in competition with a chemical growth reaction. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1995, 34, 57-64.	1.0	12
169	Characterization of silver-palladium submicronic powders. Journal of Materials Science, 1995, 30, 628-632.	1.7	10
170	Evaluation of the Redox Potential of Ag1I(CN)2-/Ag10(CN)22- in Aqueous Solution. The Journal of Physical Chemistry, 1995, 99, 13198-13202.	2.9	39
171	STM identification of silver oligomer clusters prepared by radiolysis in aqueous solution. Chemical Physics Letters, 1994, 218, 115-121.	1.2	48
172	Metal Clusters in a Liquid Environment. Photographic Development. Springer Series in Chemical Physics, 1994, , 290-311.	0.2	13
173	Study of the interaction between polyacrylate and silver oligomer clusters. Radiation Physics and Chemistry, 1993, 41, 453-459.	1.4	59
174	Ionization potential of clusters in liquids. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 82-86.	1.0	33
175	Radiolyse de solutions aqueuses de polyacrylate d'argent : premiers clusters oligomères Ag _n (n = 1 Å 4). Journal De Chimie Physique Et De Physico-Chimie Biologique, 1993, 90, 777-788.	0.2	3
176	Early steps of formation of silver/polyacrylate complexed oligomer clusters. A pulse radiolysis study. International Journal of Radiation Applications and Instrumentation Nuclear Tracks and Radiation Measurements, 1992, 40, 445-450.	0.0	3
177	Radiation-induced copper aggregates and oligomers. Chemical Physics Letters, 1992, 191, 351-356.	1.2	111
178	Photography revealed: the principles of development. Endeavour, 1991, 15, 2-9.	0.1	6
179	Étude des systèmes aqueux Ag+/APA (acide polyacrylique) et Ag0/APA à l'équilibre. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1991, 88, 855-863.	0.2	10
180	Ultra-slow aggregation process for silver clusters of a few atoms in solution. Chemical Physics Letters, 1990, 167, 193-197.	1.2	123

#	Article	IF	CITATIONS
181	Complexation of silver clusters of a few atoms by a polyanion in aqueous solution: pH effect correlated to structural changes. Chemical Physics Letters, 1990, 169, 81-84.	1.2	74
182	Size-dependent thermodynamic properties of silver aggregates. Simulation of the photographic development process. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1989, 12, 31-35.	1.0	31
183	Electrochemical behaviour of transparent heavily doped SnO2 electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 269, 375-387.	0.3	24
184	Nucleation dynamics of silver aggregates simulation of photographic development processes. International Journal of Radiation Applications and Instrumentation Nuclear Tracks and Radiation Measurements, 1989, 34, 605-617.	0.0	12
185	Improvement of charge transfer kinetics at transparent SnO2 counterelectrodes by means of a radiolytic grafting of metallic nanoaggregates. Electrochimica Acta, 1987, 32, 1533-1536.	2.6	23