
Yeong Ho Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Animal Bioscience, 2022, 35, 367-376.	0.8	14
2	The highly pathogenic H5N1 avian influenza virus induces the MAPK signaling pathway in the trachea of two Ri chicken lines. Animal Bioscience, 2022, , .	0.8	7
3	Exosomes from H5N1 avian influenza virus-infected chickens regulate antiviral immune responses of chicken immune cells. Developmental and Comparative Immunology, 2022, 130, 104368.	1.0	9
4	Influenza A pathway analysis of highly pathogenic avian influenza virus (H5N1) infection in genetically disparate Ri chicken lines. Veterinary Immunology and Immunopathology, 2022, 246, 110404.	0.5	7
5	Exosomes of lipopolysaccharide-stimulated chicken macrophages modulate immune response through the MyD88/NF-I®B signaling pathway. Developmental and Comparative Immunology, 2021, 115, 103908.	1.0	12
6	Molecular identification and characterisation of a novel chicken leukocyte immunoglobulin-like receptor A5. British Poultry Science, 2021, 62, 68-80.	0.8	2
7	Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. Veterinary Research, 2021, 52, 36.	1.1	17
8	Immunomodulatory effects of poly(I:C)-stimulated exosomes derived from chicken macrophages. Poultry Science, 2021, 100, 101247.	1.5	6
9	Expression Analysis of Chicken Interleukin-34(IL-34) for Various Pathogenic Stimulations. Korean Journal of Poultry Science, 2021, 48, 111-122.	0.1	0
10	MicroRNA gga-miR-10a-mediated transcriptional regulation of the immune genes in necrotic enteritis afflicted chickens. Developmental and Comparative Immunology, 2020, 102, 103472.	1.0	8
11	Chicken avian β-defensin 8 modulates immune response via the mitogen-activated protein kinase signaling pathways in a chicken macrophage cell line. Poultry Science, 2020, 99, 4174-4182.	1.5	15
12	Immunomodulatory effects of avian β-defensin 5 in chicken macrophage cell line. Research in Veterinary Science, 2020, 132, 81-87.	0.9	10
13	MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis. Veterinary Research, 2020, 51, 8.	1.1	17
14	Interleukin-dependent modulation of the expression of MHC class I and MHC class II genes in chicken HD11 cells. Developmental and Comparative Immunology, 2020, 110, 103729.	1.0	4
15	Characterization and functional analyses of novel chicken leukocyte immunoglobulin-like receptor subfamily B members 4 and 5. Poultry Science, 2019, 98, 6989-7002.	1.5	7
16	Identification and expression analysis of alpha tocopherol transfer protein in chickens fed diets containing different concentrations of alpha-tocopherol. Research in Veterinary Science, 2019, 123, 99-110.	0.9	2
17	Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways. Asian-Australasian Journal of Animal Sciences, 2019, 32, 614-628.	2.4	11
18	Identification of duck liver-expressed antimicrobial peptide 2 and characterization of its bactericidal activity. Asian-Australasian Journal of Animal Sciences, 2019, 32, 1052-1061.	2.4	8

YEONG HO HONG

#	Article	IF	CITATIONS
19	Dataset on characterization of recombinant interleukin-23α, IL-12p40 and IL-23 complex protein, which activates JAK-STAT signaling pathway in chicken cell lines using immunocytochemical staining. Data in Brief, 2018, 16, 799-805.	0.5	5
20	Leukocyte Immunoglobulin-Like Receptors A2 and A6 are Expressed in Avian Macrophages and Modulate Cytokine Production by Activating Multiple Signaling Pathways. International Journal of Molecular Sciences, 2018, 19, 2710.	1.8	8
21	Identification and functional characterization, including cytokine production modulation, of the novel chicken Interleukin-11. Developmental and Comparative Immunology, 2018, 87, 51-63.	1.0	11
22	Interleukin-34 Regulates Th1 and Th17 Cytokine Production by Activating Multiple Signaling Pathways through CSF-1R in Chicken Cell Lines. International Journal of Molecular Sciences, 2018, 19, 1665.	1.8	13
23	Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens. Asian-Australasian Journal of Animal Sciences, 2018, 31, 1516-1524.	2.4	11
24	Association of SNPs in the HNF4α Gene with Growth Performance of Korean Native Chickens. Korean Journal of Poultry Science, 2018, 45, 253-260.	0.1	0
25	Analysis of JAK-STAT signaling pathway genes and their microRNAs in the intestinal mucosa of genetically disparate chicken lines induced with necrotic enteritis. Veterinary Immunology and Immunopathology, 2017, 187, 1-9.	0.5	16
26	Chicken IL-26 regulates immune responses through the JAK/STAT and NF-κB signaling pathways. Developmental and Comparative Immunology, 2017, 73, 10-20.	1.0	22
27	Molecular cloning of chicken interleukin-17B, which induces proinflammatory cytokines through activation of the NF-κB signaling pathway. Developmental and Comparative Immunology, 2017, 74, 40-48.	1.0	18
28	Differentially expressed JAK-STAT signaling pathway genes and target microRNAs in the spleen of necrotic enteritis-afflicted chicken lines. Research in Veterinary Science, 2017, 115, 235-243.	0.9	26
29	Functional analyses of the interaction of chicken interleukin 23 subunit p19 with IL-12 subunit p40 to form the IL-23 complex. Molecular Immunology, 2017, 92, 54-67.	1.0	16
30	Platelet-derived growth factor receptor-alpha positive cardiac progenitor cells derived from multipotent germline stem cells are capable of cardiomyogenesis <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 29643-29656.	0.8	11
31	Analysis of MAPK Signaling Pathway Genes in the Intestinal Mucosal Layer of Necrotic Eenteritis-Afflicted Two Inbred Chicken Lines. Korean Journal of Poultry Science, 2017, 44, 199-209.	0.1	5
32	Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1037-1047.	2.4	5
33	TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines. Korean Journal of Poultry Science, 2017, 44, 211-223.	0.1	1
34	Characterization and functional analyses of a novel chicken CD8α variant X1 (CD8α1)1,2. Journal of Animal Science, 2016, 94, 2737-2751.	0.2	13
35	The novel chicken interleukin 26 protein is overexpressed in T cells and induces proinflammatory cytokines. Veterinary Research, 2016, 47, 65.	1.1	20
36	Expression analysis of cytosolic DNA-sensing pathway genes in the intestinal mucosal layer of necrotic enteritis-induced chicken. Veterinary Immunology and Immunopathology, 2016, 170, 1-12.	0.5	10

YEONG HO HONG

#	Article	IF	CITATIONS
37	Comparing the immune responses of two genetically <i>B</i> -complex disparate Fayoumi chicken lines to <i>Eimeria tenella</i> . British Poultry Science, 2016, 57, 165-171.	0.8	10
38	Single Nucleotide Polymorphisms (SNPs) Discovery in GHSR Gene and Their Association Analysis with Economic Traits in Korean Native Chickens. Korean Journal of Poultry Science, 2016, 43, 273-279.	0.1	1
39	Effect of SNP within HNF4α Aassociated with Growth Performance in Korean Native Chickens. Dongmul Jawon Yeon-gu, 2016, 27, 81-86.	0.2	2
40	The Relationship of the Expressions of Stress-related Markers and Their Production Performances in Korean Domestic Chicken Breed. Korean Journal of Poultry Science, 2016, 43, 177-189.	0.1	2
41	Effects of Dietary Vitamin E on Fertility Functions in Poultry Species. International Journal of Molecular Sciences, 2015, 16, 9910-9921.	1.8	65
42	Effects of dietary selenium on host response to necrotic enteritis in young broilers. Research in Veterinary Science, 2015, 98, 66-73.	0.9	23
43	High-throughput sequencing reveals differing immune responses in the intestinal mucosa of two inbred lines afflicted with necrotic enteritis. Veterinary Immunology and Immunopathology, 2015, 166, 116-124.	0.5	21
44	Dietary Capsicum and Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds. Research in Veterinary Science, 2015, 102, 150-158.	0.9	62
45	Genomic Regions associated with Necrotic Enteritis Resistance in Fayoumi and White Leghorn Chickens. Korean Journal of Poultry Science, 2015, 42, 27-32.	0.1	1
46	RNA-seq Profiles of Immune Related Genes in the Spleen of Necrotic Enteritis-afflicted Chicken Lines. Asian-Australasian Journal of Animal Sciences, 2015, 28, 1496-1511.	2.4	44
47	Differential regulation of microRNA transcriptome in chicken lines resistant and susceptible to necrotic enteritis disease. Poultry Science, 2014, 93, 1383-1395.	1.5	40
48	Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility. Veterinary Immunology and Immunopathology, 2014, 159, 74-82.	0.5	19
49	Transcriptional Profiles of Host-Pathogen Responses to Necrotic Enteritis and Differential Regulation of Immune Genes in Two Inbreed Chicken Lines Showing Disparate Disease Susceptibility. PLoS ONE, 2014, 9, e114960.	1.1	23
50	Effects of c.494A>C and c.267T>G SNPs in OCX-32 Gene of Korean Native Chicken on Egg Production Traits. Korean Journal of Poultry Science, 2014, 41, 191-196.	0.1	1
51	Relative Disease Susceptibility and Clostridial Toxin Antibody Responses in Three Commercial Broiler Lines Coinfected with Clostridium perfringens and Eimeria maxima Using an Experimental Model of Necrotic Enteritis. Avian Diseases, 2013, 57, 684-687.	0.4	35
52	Clostridium perfringens α-Toxin and NetB Toxin Antibodies and Their Possible Role in Protection Against Necrotic Enteritis and Gangrenous Dermatitis in Broiler Chickens. Avian Diseases, 2012, 56, 230-233.	0.4	36
53	Genome-Wide Differential Gene Expression Profiles in Broiler Chickens with Gangrenous Dermatitis. Avian Diseases, 2012, 56, 670-679.	0.4	10
54	Vaccination with Clostridium perfringens recombinant proteins in combination with Montanideâ,,¢ ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens. Vaccine, 2012, 30, 5401-5406.	1.7	81

YEONG HO HONG

#	Article	IF	CITATIONS
55	Development and characterization of mouse monoclonal antibodies reactive with chicken CD83. Veterinary Immunology and Immunopathology, 2012, 145, 527-533.	0.5	14
56	Differential gene expression profiles of Î ² -defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poultry Science, 2012, 91, 1081-1088.	1.5	107
57	Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Research in Veterinary Science, 2012, 93, 721-728.	0.9	38
58	Bovine Mastitis: An Asian Perspective. Asian Journal of Animal and Veterinary Advances, 2012, 7, 454-476.	0.3	62
59	Effect of Dietary Antimicrobials on Immune Status in Broiler Chickens. Asian-Australasian Journal of Animal Sciences, 2012, 25, 382-392.	2.4	10
60	Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host. Vaccine, 2011, 29, 8998-9004.	1.7	18
61	Development and characterization of mouse monoclonal antibodies reactive with chicken interleukin-2 receptor αlpha chain (CD25). Veterinary Immunology and Immunopathology, 2011, 144, 396-404.	0.5	19
62	Comparative Microarray Analysis of Intestinal Lymphocytes following Eimeria acervulina, E. maxima, or E. tenella Infection in the Chicken. PLoS ONE, 2011, 6, e27712.	1.1	15
63	Identification of parental line specific effects of MLF2 on resistance to coccidiosis in chickens. BMC Proceedings, 2011, 5, S21.	1.8	3
64	Genetic effects analysis of myeloid leukemia factor 2 and T cell receptor-Î ² on resistance to coccidiosis in chickens. Poultry Science, 2010, 89, 20-27.	1.5	9
65	<i>In vitro</i> effects of plant and mushroom extracts on immunological function of chicken lymphocytes and macrophages. British Poultry Science, 2010, 51, 213-221.	0.8	53
66	Comparison of global transcriptional responses to primary and secondary Eimeria acervulina infections in chickens. Developmental and Comparative Immunology, 2010, 34, 344-351.	1.0	13
67	Development and characterization of mouse monoclonal antibodies specific for chicken interleukin 18. Veterinary Immunology and Immunopathology, 2010, 138, 144-148.	0.5	8
68	Association of resistance to avian coccidiosis with single nucleotide polymorphisms in the zyxin gene. Poultry Science, 2009, 88, 511-518.	1.5	20
69	Immunomodulatory properties of dietary plum on coccidiosis. Comparative Immunology, Microbiology and Infectious Diseases, 2008, 31, 389-402.	0.7	38
70	Immune-Related Gene Expression in Two B-Complex Disparate Genetically Inbred Fayoumi Chicken Lines Following Eimeria maxima Infection. Poultry Science, 2008, 87, 433-443.	1.5	60
71	Construction and application of an avian intestinal intraepithelial lymphocyte cDNA microarray (AVIELA) for gene expression profiling during Eimeria maxima infection. Veterinary Immunology and Immunopathology, 2008, 124, 341-354.	0.5	20
72	Cloning and functional characterization of chicken interleukin-17D. Veterinary Immunology and Immunopathology, 2008, 126, 1-8.	0.5	31

Yeong Ho Hong

#	Article	IF	CITATIONS
73	Antimicrobial Activity of Chicken NK-Lysin Against Eimeria Sporozoites. Avian Diseases, 2008, 52, 302-305.	0.4	29
74	Comparison of Transcriptional Changes Associated with <i>E. acervulina</i> and <i>E. maxima</i> Infections using cDNA Microarray Technology. Developments in Biologicals, 2008, 132, 121-130.	0.4	2
75	Analysis of local innate immune response to Eimeria acervulina using chicken intestinal cDNA microarray. FASEB Journal, 2008, 22, 674.4.	0.2	0
76	Functional characterization of chicken proinflammatory cytokine ILâ€17D. FASEB Journal, 2008, 22, 1069.11.	0.2	0
77	Functional characterization of tumor necrosis factor superfamily 15 (TNFSF15) induced by lipopolysaccharides and Eimeria infection. Developmental and Comparative Immunology, 2007, 31, 934-944.	1.0	31
78	Unique responses of the avian macrophage to different species of Eimeria. Molecular Immunology, 2007, 44, 558-566.	1.0	57
79	Influence of Pediococcus-Based Probiotic on Coccidiosis in Broiler Chickens. Poultry Science, 2007, 86, 63-66.	1.5	111
80	Effects of Pediococcus- and Saccharomyces-based probiotic (MitoMax®) on coccidiosis in broiler chickens. Comparative Immunology, Microbiology and Infectious Diseases, 2007, 30, 261-268.	0.7	84
81	Fine-Mapping of Coccidia-Resistant Quantitative Trait Loci in Chickens. Poultry Science, 2006, 85, 2028-2030.	1.5	22
82	Molecular cloning and characterization of chicken lipopolysaccharide-induced TNF-α factor (LITAF). Developmental and Comparative Immunology, 2006, 30, 919-929.	1.0	116
83	Molecular cloning and characterization of chicken NK-lysin. Veterinary Immunology and Immunopathology, 2006, 110, 339-347.	0.5	67
84	Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections. Veterinary Immunology and Immunopathology, 2006, 114, 209-223.	0.5	268
85	Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Veterinary Immunology and Immunopathology, 2006, 114, 259-272.	0.5	212
86	Birth of germline chimeras by transfer of chicken embryonic germ (EG) cells into recipient embryos. Molecular Reproduction and Development, 2003, 65, 389-395.	1.0	66
87	Improved Germline Transmission in Chicken Chimeras Produced by Transplantation of Gonadal Primordial Germ Cells into Recipient Embryos1. Biology of Reproduction, 2003, 68, 1657-1662.	1.2	90
88	Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period. Theriogenology, 2002, 58, 1531-1539.	0.9	72
89	SIMPLE SEPARATION OF CHICKEN GONADAL PRIMORDIAL GERM CELLS WITH AND WITHOUT FOREIGN GENES. Cell Biology International, 2002, 26, 647-651.	1.4	7
90	Improved transfection efficiency of chicken gonadal primordial germ cells for the production of transgenic poultry. Transgenic Research, 1998, 7, 247-252.	1.3	36

#	Article	IF	CITATIONS
91	PRODUCTION OF GERMLINE CHIMERIC CHICKENS BY TRANSFER OF CULTURED PRIMORDIAL GERM CELLS. Cell Biology International, 1997, 21, 495-499.	1.4	91
92	Migration of the primordial germ cells and gonad formation in the early chicken embryo. Asian-Australasian Journal of Animal Sciences, 1995, 8, 557-562.	2.4	8