
Patrick Rollin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/455483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry, 2020, 169, 112100.	1.4	315
2	High Resolution X-ray Crystallography Shows That Ascorbate Is a Cofactor for Myrosinase and Substitutes for the Function of the Catalytic Base. Journal of Biological Chemistry, 2000, 275, 39385-39393.	1.6	165
3	lsothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules, 2018, 23, 624.	1.7	127
4	The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochemical Pharmacology, 2010, 79, 1141-1148.	2.0	116
5	Isolation of 4-Methylthio-3-butenyl Glucosinolate fromRaphanus sativusSprouts (Kaiware Daikon) and Its Redox Properties. Journal of Agricultural and Food Chemistry, 2005, 53, 9890-9896.	2.4	104
6	Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Letters, 2001, 42, 9015-9017.	0.7	92
7	An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fìtoterapìâ, 2015, 106, 12-21.	1.1	91
8	Original Synthesis of Linear, Branched and Cyclic Oligoglycerol Standards. European Journal of Organic Chemistry, 2001, 2001, 875-896.	1.2	87
9	Oxazolinethiones and Oxazolidinethiones for the First Copper-Catalyzed Desulfurative Cross-Coupling Reaction and First Sonogashira Applications. Organic Letters, 2008, 10, 853-856.	2.4	69
10	Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fìtoterapìâ, 2016, 110, 1-7.	1.1	64
11	Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts. Food Chemistry, 2013, 141, 297-303.	4.2	60
12	lsothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 577-582.	2.5	60
13	Enzymatic, Chemical, and Thermal Breakdown of3H-Labeled Glucobrassicin, the Parent Indole Glucosinolate. Journal of Agricultural and Food Chemistry, 1997, 45, 4290-4296.	2.4	59
14	Tosylated glycerol carbonate, a versatile bis-electrophile to access new functionalized glycidol derivatives. Tetrahedron, 2009, 65, 8571-8581.	1.0	57
15	The Isothiocyanate Isolated from <i>Moringa oleifera</i> Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease. Rejuvenation Research, 2017, 20, 50-63.	0.9	50
16	Glucoraphasatin: Chemistry, occurrence, and biological properties. Phytochemistry, 2010, 71, 6-12.	1.4	47
17	The myrosinase-glucosinolate interaction mechanism studied using some synthetic competitive inhibitors. FEBS Letters, 1996, 385, 87-90.	1.3	45
18	1,2-Glycerol Carbonate: A Versatile Renewable Synthon. Letters in Organic Chemistry, 2006, 3, 744-748.	0.2	40

#	Article	IF	CITATIONS
19	Glucosinolates: The synthetic approach. Comptes Rendus Chimie, 2011, 14, 194-210.	0.2	40
20	Exploring an alternative approach to the synthesis of arylalkyl and indolylmethyl glucosinolates. Tetrahedron, 1998, 54, 8515-8524.	1.0	38
21	Protective Effect of Glucosinolates Hydrolytic Products in Neurodegenerative Diseases (NDDs). Nutrients, 2018, 10, 580.	1.7	38
22	Five-Membered Cyclic Carbonates: Versatility for Applications in Organic Synthesis, Pharmaceutical, and Materials Sciences. Applied Sciences (Switzerland), 2021, 11, 5024.	1.3	38
23	Reactivity Range of a Chiral 1,3-Oxazolidine-2-thione Obtained from Vegetable Source through Chemo-enzymatic Processing. Heterocycles, 2000, 52, 827.	0.4	38
24	Wittig approach to carbohydrate-derived vinyl sulfides, new substrates for regiocontrolled ring-closure reactions. Tetrahedron, 2004, 60, 1817-1826.	1.0	33
25	Phenylsulfonylethylidene (PSE) Acetals: A Novel Protective Group in Carbohydrate Chemistry. Synthesis, 2001, 2001, 0286-0292.	1.2	32
26	Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. Molecules, 2022, 27, 624.	1.7	32
27	Regioselective de-O-benzylation of phenylsulfonylethylidene (PSE) acetals-containing benzylated monosaccharides using triisobutylaluminum (TIBAL). Tetrahedron, 2002, 58, 9579-9583.	1.0	30
28	The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition. Inflammation Research, 2017, 66, 487-503.	1.6	27
29	Chemo-enzymatic preparation from renewable resources of enantiopure 1,3-oxazolidine-2-thiones. Tetrahedron: Asymmetry, 1999, 10, 4775-4780.	1.8	25
30	The glucosinolate–myrosinase system. New insights into enzyme–substrate interactions by use of simplified inhibitors. Organic and Biomolecular Chemistry, 2005, 3, 1872.	1.5	25
31	Anomeric modification of carbohydrates using the Mitsunobu reaction. Beilstein Journal of Organic Chemistry, 2018, 14, 1619-1636.	1.3	25
32	Antimicrobial and Cytotoxic Activities of Lepidium latifolium L. Hydrodistillate, Extract and Its Major Sulfur Volatile Allyl Isothiocyanate. Chemistry and Biodiversity, 2019, 16, e1800661.	1.0	24
33	Synthesis Of 1,5-Dithio-D-Glucopyranose and Some of its Biologically Relevant Derivatives. Journal of Carbohydrate Chemistry, 1993, 12, 719-729.	0.4	23
34	Synthesis, structure and enzymatic evaluation of new spiro oxathiazole sugar derivatives. Tetrahedron, 1994, 50, 6559-6568.	1.0	23
35	Synthesis of 2-deoxy-2-fluoro-glucotropaeolin, a thioglucosidase inhibitor. Carbohydrate Research, 1997, 298, 127-130.	1.1	23
36	Phenylsulfonylethylidene (PSE) acetals as atypical carbohydrate-protective groups. Tetrahedron Letters, 2000, 41, 2357-2360.	0.7	23

#	Article	IF	CITATIONS
37	Base-modified nucleosides from carbohydrate derived oxazolidinethiones: a five-step process. Tetrahedron Letters, 2001, 42, 2977-2980.	0.7	23
38	A new and rapid access to homochiral 2,3-dihydro-oxazolo[2,3-b]quinazolin-5-ones. Tetrahedron: Asymmetry, 2001, 12, 337-340.	1.8	23
39	Small libraries of fused quinazolinone-sugars. Access to quinazolinedione nucleosides. Tetrahedron, 2004, 60, 2609-2619.	1.0	23
40	One‣tep Surface Decoration of Poly(propyleneimines) (PPIs) with the Glyceryl Moiety: New Way for Recycling Homogeneous Dendrimerâ€Based Catalysts. Advanced Synthesis and Catalysis, 2010, 352, 1826-1833.	2.1	23
41	Thio-functionalised glucosinolates: unexpected transformation of desulfoglucoraphenin. Tetrahedron Letters, 2008, 49, 292-295.	0.7	22
42	Profile and quantification of glucosinolates in Pentadiplandra brazzeana Baillon. Phytochemistry, 2012, 73, 51-56.	1.4	22
43	d-Fructose–l-sorbose interconversions. Access to 5-thio-d-fructose and interaction with the d-fructose transporter, GLUT5. Carbohydrate Research, 2001, 333, 327-334.	1.1	21
44	Synthesis of sugar-based ethenyl ethers through a vinyl bis-sulfone methodology. Tetrahedron, 2003, 59, 4563-4572.	1.0	21
45	Glucosinolate Profiling and Antimicrobial Screening of <i>Aurinia leucadea</i> (Brassicaceae). Chemistry and Biodiversity, 2011, 8, 2310-2321.	1.0	21
46	Synthetic Approaches to C-Glucosinolates. Tetrahedron, 2000, 56, 2647-2654.	1.0	20
47	Sugar-based ethenyl ethers: stereoselective dipolar cycloadditions of nitrile oxides. Tetrahedron: Asymmetry, 2002, 13, 2535-2539.	1.8	20
48	Glucosinolates in the Subantarctic Crucifer Kerguelen Cabbage (Pringlea antiscorbutica). Journal of Natural Products, 2005, 68, 234-236.	1.5	20
49	Updated Glucosinolate Profile of Dithyrea wislizenii. Journal of Natural Products, 2009, 72, 889-893.	1.5	20
50	(Z)-Stereospecific Addition of Glycosylmercaptans on Nitrilium Betaines. ¹ Synthesis of 1- <i>S</i> -Glucopyranosyl Arylthiohydroximates. Synthetic Communications, 1994, 24, 1403-1414.	1.1	19
51	Glucosinolate turnover in Brassicales species to an oxazolidin-2-one, formed via the 2-thione and without formation of thioamide. Phytochemistry, 2018, 153, 79-93.	1.4	19
52	A convenient synthesis of fluoroalkyl and fluoroaryl glycosides using Mitsunobu conditions. Carbohydrate Research, 1999, 318, 171-179.	1.1	18
53	A New Convenient Synthesis of Ethenyl Ethers. Synlett, 2001, 2001, 1962-1964.	1.0	18
54	Synthesis of Anomeric Sulfimides and Their Use as a New Family of Glycosyl Donors. European Journal of Organic Chemistry, 2002, 2002, 171-180.	1.2	18

#	Article	IF	CITATIONS
55	Glucosinolate Synthesis: a Hydroxamic Acid Approach. European Journal of Organic Chemistry, 2011, 2011, 2011, 2293-2300.	1.2	18
56	Stability of Benzylic-Type Isothiocyanates in Hydrodistillation-Mimicking Conditions. Journal of Agricultural and Food Chemistry, 2013, 61, 137-142.	2.4	18
57	Novel Gram-Scale Production of Enantiopure R-Sulforaphane from Tuscan Black Kale Seeds. Molecules, 2014, 19, 6975-6986.	1.7	18
58	Advanced NMR-Based Structural Investigation of Glucosinolates and Desulfoglucosinolates. Journal of Natural Products, 2018, 81, 323-334.	1.5	18
59	Regioselective N-vinylation of cyclic thionocarbamates through a vinyl bis-sulfone methodology. Tetrahedron Letters, 2004, 45, 6443-6446.	0.7	17
60	Palladiumâ€Catalyzed Coupling Reactions of Thioimidate Nâ€Oxides: Access to αâ€Alkenyl―and αâ€Arylâ€Functionalized Cyclic Nitrones. Angewandte Chemie - International Edition, 2010, 49, 577-580.	7.2	17
61	Glucosinolate Diversity in <i>Bretschneidera sinensis</i> of Chinese Origin. Journal of Natural Products, 2015, 78, 2001-2006.	1.5	17
62	A Combined Approach of NMR and Mass Spectrometry Techniques Applied to the α-Cyclodextrin/Moringin Complex for a Novel Bioactive Formulation â€. Molecules, 2018, 23, 1714.	1.7	17
63	Synthesis of Indole Glycosinolates, Suger Variants of Naturally Occurring Glucobrassicin. Heterocycles, 1993, 35, 1015.	0.4	16
64	Synthesis of deoxy derivatives of the glucosinolates glucotropaeolin and glucobrassicin. Carbohydrate Research, 1995, 278, 257-270.	1.1	16
65	HSCN condensation with ulosides: preferred formation of carbohydrate-fused hemiaminals of the 4-hydroxy-1,3-oxazolidine-2-thione type. Tetrahedron Letters, 2008, 49, 682-686.	0.7	16
66	Glucosinolate Chemistry: Synthesis of <i>O</i> â€Glycosylated Derivatives of Glucosinalbin. European Journal of Organic Chemistry, 2010, 2010, 3657-3664.	1.2	16
67	Preparation of (5R)-5-vinyloxazolidme-2-thione from natural epiprogoitrin using immobilized myrosinase. Tetrahedron: Asymmetry, 1994, 5, 1157-1160.	1.8	15
68	Contactless conductivity detection for screening myrosinase substrates by capillary electrophoresis. Analytica Chimica Acta, 2014, 807, 153-158.	2.6	15
69	First synthesis of anomeric sulfimides - efficient glycosyl donors. Tetrahedron Letters, 1998, 39, 8097-8100.	0.7	14
70	Dramatic effect of PSE clamping on the behaviour of d-glucal under Ferrier I conditions. Tetrahedron Letters, 2008, 49, 3484-3488.	0.7	14
71	The α-Cyclodextrin/Moringin Complex: A New Promising Antimicrobial Agent against Staphylococcus aureus. Molecules, 2018, 23, 2097.	1.7	14
72	Microwave-Assisted versus Conventional Isolation of Glucosinolate Degradation Products from Lunaria annua L. and Their Cytotoxic Activity. Biomolecules, 2020, 10, 215.	1.8	14

#	Article	IF	CITATIONS
73	Use of tosylated glycerol carbonate to access N-glycerylated aza-aromatic species. Tetrahedron, 2013, 69, 3721-3727.	1.0	13
74	The Moringin/α-CD Pretreatment Induces Neuroprotection in an In Vitro Model of Alzheimer's Disease: A Transcriptomic Study. Current Issues in Molecular Biology, 2021, 43, 197-214.	1.0	13
75	Synthesis of glycosyl sulfoximines by a highly chemo- and stereoselective NH- and O-transfer to thioglycosides. Organic and Biomolecular Chemistry, 2020, 18, 3893-3897.	1.5	12
76	Synthesis of an artificial phosphate bio-isostere of glucotropaeolin. Tetrahedron Letters, 1994, 35, 2173-2174.	0.7	11
77	Neuroprotective Potential of Secondary Metabolites from Melicope lunu-ankenda (Rutaceae). Molecules, 2019, 24, 3109.	1.7	11
78	Investigation of the glucosinolates in Hesperis matronalis L. and Hesperis laciniata All.: Unveiling 4′-O-β-d-apiofuranosylglucomatronalin. Carbohydrate Research, 2020, 488, 107898.	1.1	11
79	Glucosinolates: Novel Sources and Biological Potential. Reference Series in Phytochemistry, 2017, , 3-60.	0.2	10
80	Sugar Thiochemistry. First Synthesis of 1,5-Dithio-D-Glucopyranose and Related Thia-Analogs of Glucosinolates. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 74, 467-468.	0.8	9
81	Carba-glucotropaeolin: the first non-hydrolyzable glucosinolate analogue, to inhibit myrosinase. Tetrahedron Letters, 2002, 43, 2889-2890.	0.7	9
82	A simple O-sulfated thiohydroximate molecule to be the first micromolar range myrosinase inhibitor. Tetrahedron Letters, 2009, 50, 3302-3305.	0.7	9
83	Glucosinolate Distribution in Aerial Parts of <i>Degenia velebitica</i> . Chemistry and Biodiversity, 2011, 8, 2090-2096.	1.0	9
84	UGT74B1 from Arabidopsis thaliana as a versatile biocatalyst for the synthesis of desulfoglycosinolates. Organic and Biomolecular Chemistry, 2016, 14, 6252-6261.	1.5	9
85	LC–MS profiling of glucosinolates in the seeds of <i>Brassica elongata</i> Ehrh., and of the two stenoendemic <i>B. botteri</i> Vis and <i>B. cazzae</i> Ginzb. & Teyber. Natural Product Research, 2017, 31, 58-62.	1.0	9
86	Investigating thio-analogues of PSE acetals: a more complex reaction. Tetrahedron Letters, 2003, 44, 5723-5725.	0.7	8
87	Stereoselective Synthesis of 1,3-Disaccharides through Diels-Alder Reactions: Part 2[]: Convenient Protecting Groups for Heterodienes and Conformational Evaluations. Journal of Carbohydrate Chemistry, 2009, 28, 124-141.	0.4	8
88	Carbohydrate-derived PSE acetals: controlled base-induced ring cleavage. Tetrahedron, 2012, 68, 544-551.	1.0	8
89	Synthesis of O-protected thiohydroximate-linked pseudodisaccharides. Carbohydrate Research, 1995, 266, 321-325.	1.1	7
90	Probing of PSE acetal protection for nucleoside chemistry. Tetrahedron Letters, 2007, 48, 3851-3854.	0.7	7

#	Article	IF	CITATIONS
91	Thermodynamics versus kinetics in hetero-Michael cyclizations: a highly stereoselective approach to access both epimers of a C-d-mannopyranoside. Tetrahedron Letters, 2008, 49, 4750-4753.	0.7	7
92	Reductive opening of carbohydrate phenylsulfonylethylidene (PSE) acetals. Carbohydrate Research, 2015, 417, 117-124.	1.1	7
93	Glucosinolates in two endemic plants of the Aurinia genus and their chemotaxonomic significance. Natural Product Communications, 2013, 8, 1463-6.	0.2	7
94	The first synthesis of C-glucotropaeolin. Tetrahedron Letters, 1999, 40, 7319-7321.	0.7	6
95	Diphenylphosphinoylethylidene (DPE) acetals: an alternative protective strategy in glycochemistry. Tetrahedron Letters, 2009, 50, 101-103.	0.7	6
96	Sulfur-containing metabolites in radishes. Further exploration of glucoraphenin desulfation. Journal of Sulfur Chemistry, 2013, 34, 48-54.	1.0	6
97	Long-chain Glucosinolates from <i>Arabis turrita</i> : Enzymatic and Non-enzymatic Degradations. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	6
98	Stability and bioaccessibility during ex vivo digestion of glucoraphenin and glucoraphasatin from Matthiola incana (L.) R. Br Journal of Food Composition and Analysis, 2020, 90, 103483.	1.9	6
99	Synthesis of Aza-Analogs of Natural and Artificial Desulfoglucosinolates. Journal of Carbohydrate Chemistry, 1993, 12, 1127-1138.	0.4	5
100	Chemistry Prospects of new Sugar-Derived Vinyl Sulfones. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 503-504.	0.8	5
101	Expeditious synthesis of β-cycloacetalic sulfoxides. Introducing 1-phenylsulfinyl-2-phenylsulfanylethylene (SOSE), a promising new alkenylsulfur reagent. Tetrahedron Letters, 2005, 46, 1035-1037.	0.7	5
102	Glucosinolates in Two Endemic Plants of the <i>Aurinia</i> Genus and their Chemotaxonomic Significance. Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	5
103	Glycerol carbonate in Ferrier reaction: Access to new enantiopure building blocks to develop glycoglycerolipid analogues. Carbohydrate Research, 2016, 436, 1-10.	1.1	5
104	Glucosinolates in Reseda lutea L.: Distribution in plant tissues during flowering time. Biochemical Systematics and Ecology, 2020, 90, 104043.	0.6	5
105	Isobornanyl sulfoxides and isobornanyl sulfone: Physicochemical characteristics and the features of crystal structure. Journal of Molecular Structure, 2021, 1239, 130491.	1.8	5
106	BIS-DESULFOGLUCOSINOLATES: A NEW CLASS OF BOLAFORMS. Synthetic Communications, 2002, 32, 2919-2930.	1.1	4
107	Vinyl bis-sulfone methodology in thiosugars: selective access to chiral thiovinyl sulfones and PSE oxathianes. Tetrahedron, 2006, 62, 5141-5151.	1.0	4
108	Reactivity of 1-phenylsulfinyl-2-phenylsulfanylethylene (SOSE) with O-nucleophiles generated by potassium tert-butoxide. Tetrahedron Letters, 2007, 48, 3699-3703.	0.7	4

#	Article	IF	CITATIONS
109	Glucosinolates of the only three Brassicales indigenous to French Polynesia. Natural Product Research, 2020, 34, 2847-2851.	1.0	4
110	Unexpected matrix interactions in liquid secondary ion mass spectrometry of two pyranosyl mercaptans. Rapid Communications in Mass Spectrometry, 2011, 25, 1399-1406.	0.7	3
111	Sulfur Metabolites in Brassicales: From Daily Vegetables to Thiofunctional Chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1130-1136.	0.8	3
112	Glucosinolates: Novel Sources and Biological Potential. , 2015, , 1-58.		3
113	ï‰-Methylsulfanylalkyl Glucosinolates: A General Synthetic Pathway. Molecules, 2018, 23, 786.	1.7	3
114	Glucosinolates of Lepidium graminifolium L. (Brassicaceae) from Croatia. Natural Product Research, 2021, 35, 494-498.	1.0	3
115	Lepidium graminifolium L.: Glucosinolate Profile and Antiproliferative Potential of Volatile Isolates. Molecules, 2021, 26, 5183.	1.7	3
116	Long-chain Glucosinolates from Arabis turrita: Enzymatic and Non-enzymatic Degradations. Natural Product Communications, 2015, 10, 1043-6.	0.2	3
117	A micromolar O-sulfated thiohydroximate inhibitor bound to plant myrosinase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 152-155.	0.7	2
118	Thioimidate N-Oxides: From Nature to Synthetic Pathways. Synlett, 2010, 2010, 725-728.	1.0	2
119	Mild Copper-Catalyzed, l-Proline-Promoted Cross-Coupling of Methyl 3-Amino-1-benzothiophene-2-carboxylate. Molecules, 2021, 26, 6822.	1.7	2
120	Applying the hydrodistillation process to Pentadiplandra brazzeana Baill. root: a chemical assessment. Natural Product Research, 2019, 33, 1383-1386.	1.0	0
121	Glucosinolates in wild and cultivated Brassica montana Pourret (Brassicaceae) from southern France. Natural Product Research, 2020, 34, 1163-1166.	1.0	0