
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4554687/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable Highâ€Rate and<br>Longâ€Cycle Sodiumâ€lon Storage. Small, 2016, 12, 3048-3058.                                                       | 5.2  | 440       |
| 2  | Directional Construction of Vertical Nitrogenâ€Doped 1Tâ€2H MoSe <sub>2</sub> /Graphene Shell/Core<br>Nanoflake Arrays for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1700748.                   | 11.1 | 404       |
| 3  | Popcorn Inspired Porous Macrocellular Carbon: Rapid Puffing Fabrication from Rice and Its<br>Applications in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1701110.                                        | 10.2 | 361       |
| 4  | Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium<br>Nitride Arrays for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018,<br>28, 1706391.         | 7.8  | 350       |
| 5  | An Inorganicâ€Rich Solid Electrolyte Interphase for Advanced Lithiumâ€Metal Batteries in Carbonate<br>Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 3661-3671.                                        | 7.2  | 317       |
| 6  | Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental<br>applications: challenges, opportunities, and future vision. Journal of Materials Chemistry A, 2017, 5,<br>8209-8229.   | 5.2  | 274       |
| 7  | Phase Modulation of (1Tâ€2H)â€MoSe2/TiC  Shell/Core Arrays via Nitrogen Doping for Highly Efficient<br>Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1802223.                                                | 11.1 | 244       |
| 8  | Exploring Advanced Sandwiched Arrays by Vertical Graphene and Nâ€Doped Carbon for Enhanced<br>Sodium Storage. Advanced Energy Materials, 2017, 7, 1601804.                                                                 | 10.2 | 243       |
| 9  | 3D TiC/C Core/Shell Nanowire Skeleton for Dendriteâ€Free and Longâ€Life Lithium Metal Anode. Advanced<br>Energy Materials, 2018, 8, 1702322.                                                                               | 10.2 | 237       |
| 10 | Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy, 2018,<br>53, 958-966.                                                                                                    | 8.2  | 227       |
| 11 | Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg<br>Alloy Protection. ACS Applied Materials & Interfaces, 2017, 9, 11247-11257.                                          | 4.0  | 225       |
| 12 | Multiscale Grapheneâ€Based Materials for Applications in Sodium Ion Batteries. Advanced Energy<br>Materials, 2019, 9, 1803342.                                                                                             | 10.2 | 215       |
| 13 | Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy and Environmental Science, 2015, 8, 1559-1568.                                    | 15.6 | 210       |
| 14 | Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional<br>Materials, 2020, 30, 1910375.                                                                                                | 7.8  | 206       |
| 15 | Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS <sub>2</sub> Arrays<br>for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58,<br>16289-16296. | 7.2  | 201       |
| 16 | High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Journal of the American<br>Chemical Society, 2020, 142, 2438-2447.                                                                              | 6.6  | 195       |
| 17 | Interface issues of lithium metal anode for <scp>highâ€energy</scp> batteries: Challenges, strategies,<br>and perspectives. InformaÄnÃ-Materiály, 2021, 3, 155-174.                                                        | 8.5  | 195       |
| 18 | Defect Promoted Capacity and Durability of Nâ€MnO <sub>2–</sub> <i><sub>x</sub></i> Branch Arrays<br>via Lowâ€Temperature NH <sub>3</sub> Treatment for Advanced Aqueous Zinc Ion Batteries. Small, 2019,<br>15, e1905452. | 5.2  | 171       |

| #  | Article                                                                                                                                                                                                     | IF               | CITATIONS            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 19 | Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur<br>Cathodes. Advanced Materials, 2019, 31, e1900009.                                                               | 11.1             | 168                  |
| 20 | Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 196-208.                                                                 | 7.3              | 158                  |
| 21 | Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Research, 2016, 9, 1618-1629.                                | 5.8              | 152                  |
| 22 | Perovskite solar cell powered electrochromic batteries for smart windows. Materials Horizons, 2016,<br>3, 588-595.                                                                                          | 6.4              | 148                  |
| 23 | Cathode-Supported All-Solid-State Lithium–Sulfur Batteries with High Cell-Level Energy Density. ACS<br>Energy Letters, 2019, 4, 1073-1079.                                                                  | 8.8              | 148                  |
| 24 | Enhancing Ultrafast Lithium Ion Storage of Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> by Tailored<br>TiC/C Core/Shell Skeleton Plus Nitrogen Doping. Advanced Functional Materials, 2018, 28, 1802756. | 7.8              | 145                  |
| 25 | Novel Metal@Carbon Spheres Core–Shell Arrays by Controlled Selfâ€Assembly of Carbon Nanospheres:<br>A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015, 5, 1401709.            | 10.2             | 139                  |
| 26 | Porous Carbon Hosts for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 3710-3725.                                                                                                      | 1.7              | 136                  |
| 27 | In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct<br>Highâ€Performance Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1806470.                          | 11.1             | 133                  |
| 28 | Spore Carbon from <i>Aspergillus Oryzae</i> for Advanced Electrochemical Energy Storage.<br>Advanced Materials, 2018, 30, e1805165.                                                                         | 11.1             | 122                  |
| 29 | Boosting sodium ion storage by anchoring MoO <sub>2</sub> on vertical graphene arrays. Journal of<br>Materials Chemistry A, 2018, 6, 15546-15552.                                                           | 5.2              | 118                  |
| 30 | A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10<br>- A European Journal, 2017, 23, 15203-15209.                                                 | Tf 50 307<br>1.7 | Td (Fluorideá<br>117 |
| 31 | Introducing Oxygen Defects into Phosphate Ions Intercalated Manganese Dioxide/Vertical Multilayer<br>Graphene Arrays to Boost Flexible Zinc Ion Storage. Small Methods, 2020, 4, 1900828.                   | 4.6              | 115                  |
| 32 | Exploring Selfâ€Healing Liquid Na–K Alloy for Dendriteâ€Free Electrochemical Energy Storage. Advanced<br>Materials, 2018, 30, e1804011.                                                                     | 11.1             | 112                  |
| 33 | Hierarchical porous Ti <sub>2</sub> Nb <sub>10</sub> O <sub>29</sub> nanospheres as superior anode<br>materials for lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 21134-21139.            | 5.2              | 111                  |
| 34 | Straw–Brick‣ike Carbon Fiber Cloth/Lithium Composite Electrode as an Advanced Lithium Metal<br>Anode. Small Methods, 2018, 2, 1800035.                                                                      | 4.6              | 106                  |
| 35 | Nitrogenâ€Doped Carbon Embedded MoS <sub>2</sub> Microspheres as Advanced Anodes for Lithium―and<br>Sodiumâ€ion Batteries. Chemistry - A European Journal, 2016, 22, 11617-11623.                           | 1.7              | 104                  |
| 36 | Rationally Designed Silicon Nanostructures as Anode Material for Lithiumâ€ion Batteries. Advanced<br>Engineering Materials, 2018, 20, 1700591.                                                              | 1.6              | 97                   |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy,<br>2019, 62, 367-375.                                                                                                  | 8.2  | 93        |
| 38 | Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nature Communications, 2020, 11, 132.                                                                                                 | 5.8  | 92        |
| 39 | Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion. Small Methods, 2019, 3, 1900596.                                                                                                         | 4.6  | 91        |
| 40 | Singleâ€Crystalline, Metallic TiC Nanowires for Highly Robust and Wideâ€Temperature Electrochemical<br>Energy Storage. Small, 2017, 13, 1602742.                                                                        | 5.2  | 89        |
| 41 | All-solid-state electrochromic devices based on WO3     NiO films: material developments and future applications. Science China Chemistry, 2017, 60, 3-12.                                                              | 4.2  | 88        |
| 42 | Coupled Biphase (1Tâ€2H)â€MoSe <sub>2</sub> on Mold Spore Carbon for Advanced Hydrogen Evolution<br>Reaction. Small, 2019, 15, e1901796.                                                                                | 5.2  | 87        |
| 43 | Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced<br>Electrodes for Flexible Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003657.                               | 11.1 | 86        |
| 44 | A CNT cocoon on sodium manganate nanotubes forming a core/branch cathode coupled with a helical<br>carbon nanofibre anode for enhanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4,<br>11207-11213. | 5.2  | 85        |
| 45 | SnO <sub>2</sub> Nanoflake Arrays Coated with Polypyrrole on a Carbon Cloth as Flexible Anodes for<br>Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 24198-24204.                                  | 4.0  | 81        |
| 46 | High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting.<br>Nano-Micro Letters, 2019, 11, 12.                                                                             | 14.4 | 81        |
| 47 | Multifunctional Hyphae Carbon Powering Lithium–Sulfur Batteries. Advanced Materials, 2022, 34,<br>e2107415.                                                                                                             | 11.1 | 81        |
| 48 | Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials<br>Technologies, 2017, 2, 1700182.                                                                                             | 3.0  | 78        |
| 49 | High-energy cathode materials for Li-ion batteries: A review of recent developments. Science China<br>Technological Sciences, 2015, 58, 1809-1828.                                                                      | 2.0  | 74        |
| 50 | Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction.<br>ChemElectroChem, 2019, 6, 3530-3548.                                                                                           | 1.7  | 73        |
| 51 | Hybrid vertical graphene/lithium titanate–CNTs arrays for lithium ion storage with extraordinary performance. Journal of Materials Chemistry A, 2017, 5, 8916-8921.                                                     | 5.2  | 71        |
| 52 | Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes.<br>Journal of Materials Chemistry A, 2019, 7, 21794-21801.                                                      | 5.2  | 71        |
| 53 | A synergistic vertical graphene skeleton and S–C shell to construct high-performance<br>TiNb <sub>2</sub> O <sub>7</sub> -based core/shell arrays. Journal of Materials Chemistry A, 2018, 6,<br>20195-20204.           | 5.2  | 70        |
| 54 | Nitrogen-Doped Sponge Ni Fibers as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.<br>Nano-Micro Letters, 2019, 11, 21.                                                                                | 14.4 | 70        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Construction of Allâ€Solidâ€State Batteries based on a Sulfurâ€Graphene Composite and<br>Li <sub>9.54</sub> Si <sub>1.74</sub> P <sub>1.44</sub> S <sub>11.7</sub> Cl <sub>0.3</sub> Solid<br>Electrolyte. Chemistry - A European Journal, 2017, 23, 13950-13956. | 1.7  | 68        |
| 56 | Monolayer titanium carbide hollow sphere arrays formed via an atomic layer deposition assisted<br>method and their excellent high-temperature supercapacitor performance. Journal of Materials<br>Chemistry A, 2016, 4, 18717-18722.                              | 5.2  | 66        |
| 57 | Hierarchical MoS <sub>2</sub> /Carbon Composite Microspheres as Advanced Anodes for<br>Lithium/Sodiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 11220-11226.                                                                                      | 1.7  | 65        |
| 58 | Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Advances, 2013, 3, 24914.                                                                                                                                                    | 1.7  | 64        |
| 59 | Rational construction of a metal core for smart combination with<br>Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> as integrated arrays with superior high-rate Li-ion<br>storage performance. Journal of Materials Chemistry A, 2017, 5, 1394-1399.             | 5.2  | 64        |
| 60 | <i>In situ</i> formation of a Li <sub>3</sub> N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A, 2021, 9, 13531-13539.                                                               | 5.2  | 62        |
| 61 | Anchoring Ni <sub>2</sub> P Sheets on NiCo <sub>2</sub> O <sub>4</sub> Nanocone Arrays as<br>Optimized Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4,<br>1700481.                                                      | 1.9  | 59        |
| 62 | A Smart Superhydrophobic Coating on AZ31B Magnesium Alloy with Selfâ€Healing Effect. Advanced Materials Interfaces, 2016, 3, 1500694.                                                                                                                             | 1.9  | 57        |
| 63 | Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode<br>for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13598-13605.                                                                        | 4.0  | 57        |
| 64 | Multiscale Porous Carbon Nanomaterials for Applications in Advanced Rechargeable Batteries.<br>Batteries and Supercaps, 2019, 2, 9-36.                                                                                                                            | 2.4  | 56        |
| 65 | A Versatile Li <sub>6.5</sub> In <sub>0.25</sub> P <sub>0.75</sub> S <sub>5</sub> I Sulfide Electrolyte<br>Triggered by Ultimateâ€Energy Mechanical Alloying for Allâ€Solidâ€State Lithium Metal Batteries. Advanced<br>Energy Materials, 2021, 11, 2101521.      | 10.2 | 55        |
| 66 | Efficient oxygen reduction reaction using mesoporous Ni-doped Co <sub>3</sub> O <sub>4</sub><br>nanowire array electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 18372-18379.                                                                          | 5.2  | 54        |
| 67 | Recent Developments of Allâ€5olidâ€5tate Lithium Secondary Batteries with Sulfide Inorganic<br>Electrolytes. Chemistry - A European Journal, 2018, 24, 6007-6018.                                                                                                 | 1.7  | 52        |
| 68 | A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet<br>polymerization for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 558,<br>145-154.                                                     | 5.0  | 52        |
| 69 | Boosting Highâ€Rate Sodium Storage Performance of Nâ€Doped Carbonâ€Encapsulated<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> Nanoparticles Anchoring on Carbon<br>Cloth. Small, 2019, 15, e1902432.                                          | 5.2  | 51        |
| 70 | Improved Ionic Conductivity and Li Dendrite Suppression Capability toward<br>Li <sub>7</sub> P <sub>3</sub> S <sub>11</sub> -Based Solid Electrolytes Triggered by Nb and O<br>Cosubstitution. ACS Applied Materials & Interfaces, 2020, 12, 54662-54670.         | 4.0  | 50        |
| 71 | Ti <sup>3+</sup> Selfâ€Doped Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> Anchored on Nâ€Doped<br>Carbon Nanofiber Arrays for Ultrafast Lithiumâ€ion Storage. Small, 2019, 15, e1905296.                                                                       | 5.2  | 49        |
| 72 | A Powerful Oneâ€Step Puffing Carbonization Method for Construction of Versatile Carbon Composites with Highâ€Efficiency Energy Storage. Advanced Materials, 2021, 33, e2102796.                                                                                   | 11.1 | 48        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion<br>Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15630-15637.                                                                                 | 4.0  | 45        |
| 74 | Construction of Nitrogenâ€Đoped Carbonâ€Coated MoSe <sub>2</sub> Microspheres with Enhanced Performance for Lithium Storage. Chemistry - A European Journal, 2017, 23, 12924-12929.                                                                   | 1.7  | 43        |
| 75 | A Facile Way to Construct Stable and Ionic Conductive Lithium Sulfide Nanoparticles Composed Solid<br>Electrolyte Interphase on Li Metal Anode. Advanced Functional Materials, 2021, 31, 2006380.                                                     | 7.8  | 43        |
| 76 | Enhancement of the advanced Na storage performance of<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> in a symmetric sodium full cell<br><i>via</i> a dual strategy design. Journal of Materials Chemistry A, 2019, 7, 10231-10238. | 5.2  | 42        |
| 77 | Pineâ€Needleâ€Like Cu–Co Skeleton Composited with Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub><br>Forming Core–Branch Arrays for Highâ€Rate Lithium Ion Storage. Small, 2018, 14, e1704339.                                                        | 5.2  | 40        |
| 78 | Nonâ€Newtonian Fluid State K–Na Alloy for a Stretchable Energy Storage Device. Small Methods, 2019, 3,<br>1900383.                                                                                                                                    | 4.6  | 39        |
| 79 | Synergy of Ion Doping and Spiral Array Architecture on<br>Ti <sub>2</sub> Nb <sub>10</sub> O <sub>29</sub> : A New Way to Achieve Highâ€Power Electrodes.<br>Advanced Functional Materials, 2020, 30, 2002665.                                        | 7.8  | 37        |
| 80 | Hydrothermal synthesized porous Co(OH)2 nanoflake film for supercapacitor application. Science<br>Bulletin, 2012, 57, 4215-4219.                                                                                                                      | 1.7  | 34        |
| 81 | A NiCo <sub>2</sub> O <sub>4</sub> Shell on a Hollow Ni Nanorod Array Core for Water Splitting with Enhanced Electrocatalytic Performance. ChemNanoMat, 2018, 4, 124-131.                                                                             | 1.5  | 34        |
| 82 | Construction of 1Tâ€MoSe <sub>2</sub> /TiC@C Branch–Core Arrays as Advanced Anodes for Enhanced<br>Sodium Ion Storage. ChemSusChem, 2020, 13, 1575-1581.                                                                                              | 3.6  | 34        |
| 83 | Growth of a porous NiCoO <sub>2</sub> nanowire network for transparent-to-brownish grey<br>electrochromic smart windows with wide-band optical modulation. Journal of Materials Chemistry C,<br>2021, 9, 14378-14387.                                 | 2.7  | 34        |
| 84 | Ultrafast Synthesis of Iâ€Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic<br>Conductivity. Advanced Materials, 2022, 34, e2107346.                                                                                                  | 11.1 | 34        |
| 85 | lonic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal<br>Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6859-6868.                                                                            | 4.0  | 31        |
| 86 | Recent progress on the phase modulation of molybdenum disulphide/diselenide and their applications in electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 1418-1428.                                                                         | 5.2  | 30        |
| 87 | An Inorganicâ€Rich Solid Electrolyte Interphase for Advanced Lithiumâ€Metal Batteries in Carbonate<br>Electrolytes. Angewandte Chemie, 2021, 133, 3705-3715.                                                                                          | 1.6  | 29        |
| 88 | Synthesis of reduced graphene oxide by an ionothermal method and electrochemical performance.<br>RSC Advances, 2013, 3, 11807.                                                                                                                        | 1.7  | 28        |
| 89 | Mechanical Properties and in Vitro and in Vivo Biocompatibility of a-C/a-C:Ti Nanomultilayer Films on<br>Ti6Al4V Alloy as Medical Implants. ACS Applied Materials & Interfaces, 2017, 9, 15933-15942.                                                 | 4.0  | 28        |
| 90 | Anchoring SnS <sub>2</sub> on TiC/C Backbone to Promote Sodium Ion Storage by Phosphate Ion<br>Doping. Small, 2020, 16, e2004072.                                                                                                                     | 5.2  | 28        |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | An intercalation compound for high-safe K metal batteries. Energy Storage Materials, 2021, 41, 606-613.                                                                                                                                                      | 9.5 | 28        |
| 92  | Microstructure and corrosion behavior of Cr and Cr–P alloy coatings electrodeposited from a<br>Cr( <scp>iii</scp> ) deep eutectic solvent. RSC Advances, 2015, 5, 71268-71277.                                                                               | 1.7 | 27        |
| 93  | High Performance Single-Crystal Ni-Rich Cathode Modification via Crystalline LLTO Nanocoating for<br>All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 726-735.                                                               | 4.0 | 27        |
| 94  | Facile and scalable synthesis of nanosized core–shell Li <sub>2</sub> S@C composite for<br>high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 16653-16660.                                                                | 5.2 | 26        |
| 95  | Verticalâ€Aligned Li <sub>2</sub> S–Graphene Encapsulated within a Carbon Shell as a Freeâ€Standing<br>Cathode for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 11169-11174.                                                          | 1.7 | 26        |
| 96  | In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting<br>technique and a new sintering technique. Journal of the Mechanical Behavior of Biomedical<br>Materials, 2019, 91, 149-158.                        | 1.5 | 25        |
| 97  | Porous Polyamide Skeleton-Reinforced Solid-State Electrolyte: Enhanced Flexibility, Safety, and Electrochemical Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 11018-11025.                                                                 | 4.0 | 25        |
| 98  | Robust Li <sub>6</sub> PS <sub>5</sub> I Interlayer to Stabilize the Tailored Electrolyte<br>Li <sub>9.95</sub> SnP <sub>2</sub> S <sub>11.95</sub> F <sub>0.05</sub> /Li Metal Interface. ACS Applied<br>Materials & Interfaces, 2021, 13, 30739-30745.     | 4.0 | 24        |
| 99  | In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium<br>metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.                                                              | 9.5 | 24        |
| 100 | Heterovalent Cation Substitution to Enhance the Ionic Conductivity of Halide Electrolytes. ACS<br>Applied Materials & Interfaces, 2021, 13, 47610-47618.                                                                                                     | 4.0 | 23        |
| 101 | Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. Journal of Solid State Electrochemistry, 2017, 21, 1203-1210.                                                                                | 1.2 | 22        |
| 102 | Impacts of surface chemistry of functional carbon nanodots on the plant growth. Ecotoxicology and Environmental Safety, 2020, 206, 111220.                                                                                                                   | 2.9 | 22        |
| 103 | Potassium Hexafluorophosphate Additive Enables Stable Lithium–Sulfur Batteries. ACS Applied<br>Materials & Interfaces, 2020, 12, 56017-56026.                                                                                                                | 4.0 | 22        |
| 104 | Sodium-storage behavior of electron-rich element-doped amorphous carbon. Applied Physics Reviews, 2021, 8, .                                                                                                                                                 | 5.5 | 22        |
| 105 | Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for<br>Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 10610-10615.                                                           | 1.7 | 21        |
| 106 | Enhanced bioaccumulation efficiency and tolerance for Cd (â¡) in Arabidopsis thaliana by amphoteric nitrogen-doped carbon dots. Ecotoxicology and Environmental Safety, 2020, 190, 110108.                                                                   | 2.9 | 21        |
| 107 | Exploring the Stability Effect of the Co-Substituted<br>P2-Na <sub>0.67</sub> [Mn <sub>0.67</sub> Ni <sub>0.33</sub> ]O <sub>2</sub> Cathode for Liquid- and<br>Solid-State Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41477-41484. | 4.0 | 21        |
| 108 | Ion competition and limiting dendrite growth models of hybrid-ion symmetric cell. Energy Storage<br>Materials, 2021, 42, 268-276.                                                                                                                            | 9.5 | 20        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | LiBr–LiFâ€Rich Solid–Electrolyte Interface Layer on Lithiophilic 3D Framework for Enhanced Lithium<br>Metal Anode. Small Structures, 2022, 3, .                                                                                    | 6.9  | 20        |
| 110 | Synthesis and characterization of graphite nanofibers deposited on nickel foams. Physical Chemistry Chemical Physics, 2002, 4, 5325-5329.                                                                                          | 1.3  | 19        |
| 111 | Bioinspired large-scale production of multidimensional high-rate anodes for both liquid &<br>solid-state lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 22958-22966.                                            | 5.2  | 19        |
| 112 | Singleâ€Crystalâ€Layered Niâ€Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of<br>Li <sub>10</sub> SnP <sub>2</sub> S <sub>12</sub> â€Based Allâ€Solidâ€State Li Batteries. Small, 2021, 17,<br>e2103830. | 5.2  | 19        |
| 113 | Enhanced Liâ€&torage of Ni <sub>3</sub> S <sub>2</sub> Nanowire Arrays with Nâ€Doped Carbon Coating<br>Synthesized by Oneâ€&tep CVD Process and Investigated Via Ex Situ TEM. Small, 2019, 15, e1904433.                           | 5.2  | 18        |
| 114 | Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi<br>Solid Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23743-23750.                                         | 4.0  | 18        |
| 115 | Fluorinated Interface Layer with Embedded Zinc Nanoparticles for Stable Lithium-Metal Anodes. ACS<br>Applied Materials & Interfaces, 2021, 13, 17690-17698.                                                                        | 4.0  | 17        |
| 116 | Highly Efficient Bifunctional Catalyst of NiCo <sub>2</sub> O <sub>4</sub> @NiO@Ni Core/Shell<br>Nanocone Array for Stable Overall Water Splitting. Particle and Particle Systems Characterization,<br>2017, 34, 1700228.          | 1.2  | 16        |
| 117 | Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS 2 Arrays for<br>Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 16435-16442.                                              | 1.6  | 16        |
| 118 | N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of Electronic Materials, 2021, 50, 5072.                                                                                       | 1.0  | 15        |
| 119 | The Effect of Stress Relaxation on the Microstructure and Hardness Evolution of Pure<br>Amorphousâ€Carbon and C/Ti Multilayer Films. Advanced Engineering Materials, 2010, 12, 920-925.                                            | 1.6  | 14        |
| 120 | Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for<br>Advanced Lithium Metal Anodes. Frontiers in Chemistry, 2020, 7, 952.                                                            | 1.8  | 14        |
| 121 | Formation and <i>In Vitro</i> Evaluation of a Deep Eutectic Solvent Conversion Film on Biodegradable<br>Magnesium Alloy. ACS Applied Materials & Interfaces, 2020, 12, 33315-33324.                                                | 4.0  | 13        |
| 122 | Selfâ€Healing Properties of Alkali Metals under "Highâ€Energy Conditions―in Batteries. Advanced Energy<br>Materials, 2021, 11, 2100470.                                                                                            | 10.2 | 13        |
| 123 | A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State<br>Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29844-29855.                                       | 4.0  | 13        |
| 124 | In vitro and in vivo investigations of a-C/a-C:Ti nanomultilayer coated Ti6Al4V alloy as artificial femoral head. Materials Science and Engineering C, 2019, 99, 816-826.                                                          | 3.8  | 10        |
| 125 | High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode.<br>Research, 2019, 2019, 6930294.                                                                                                | 2.8  | 9         |
| 126 | In vitro and in vivo evaluations of the fully porous Ti6Al4V acetabular cups fabricated by a sintering technique. RSC Advances, 2019, 9, 6724-6732.                                                                                | 1.7  | 8         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Expounding the Initial Alloying Behavior of Na–K Liquid Alloy Electrodes. ACS Applied Materials &<br>Interfaces, 2021, 13, 40118-40126.                                                         | 4.0 | 7         |
| 128 | Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants. Oxford Open Materials Science, 2020, 1, .                                                    | 0.5 | 5         |
| 129 | Magnetron Sputtering Sn-Ag-O Thin Film Anodes For Rechargeable Lithium Ion Batteries. , 2006, , .                                                                                               |     | 1         |
| 130 | Effect of rapid quenching on the microstructure and electrochemical characteristics of<br>La0.6Ce0.4Ni3.6Co0.65Mn0.4Al0.2Ti0.05(FeB)0.1 hydrogen storage alloy. Rare Metals, 2010, 29, 593-596. | 3.6 | 1         |
| 131 | Fabrication of highly ordered porous nickel phosphide films and their application as anode for lithium ion batteries. , 2010, , .                                                               |     | 0         |
| 132 | Frontispiece: Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide<br>Inorganic Electrolytes. Chemistry - A European Journal, 2018, 24, .                            | 1.7 | 0         |
| 133 | Frontispiece: Porous Carbon Hosts for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019,<br>25                                                                                     | 1.7 | 0         |