Philip Bett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4554081/publications.pdf

Version: 2024-02-01

361413 289244 2,378 41 20 40 citations h-index g-index papers 49 49 49 2686 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The statistics of CDM halo concentrations. Monthly Notices of the Royal Astronomical Society, 2007, 381, 1450-1462.	4.4	627
2	The spin and shape of dark matter haloes in the Millennium simulation of a \hat{b} cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2007, 376, 215-232.	4.4	380
3	The climatological relationships between wind and solar energy supply in Britain. Renewable Energy, 2016, 87, 96-110.	8.9	167
4	The mass profile and accretion history of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1103-1113.	4.4	161
5	The dynamical state and mass–concentration relation of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1322-1328.	4.4	85
6	Skilful seasonal predictions for the European energy industry. Environmental Research Letters, 2017, 12, 024002.	5.2	69
7	Intrinsic galaxy shapes and alignments – I. Measuring and modelling COSMOS intrinsic galaxy ellipticities. Monthly Notices of the Royal Astronomical Society, 2013, 431, 477-492.	4.4	64
8	Intrinsic galaxy shapes and alignments – II. Modelling the intrinsic alignment contamination of weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2013, 436, 819-838.	4.4	60
9	The angular momentum of cold dark matter haloes with and without baryons. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	52
10	Quantifying the sensitivity of european power systems to energy scenarios and climate change projections. Renewable Energy, 2021, 164, 1062-1075.	8.9	52
11	Halo shapes from weak lensing: the impact of galaxy-halo misalignment. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3303-3323.	4.4	51
12	Spin flips - I. Evolution of the angular momentum orientation of Milky Way-mass dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3324-3333.	4.4	50
13	Improving user engagement and uptake of climate services in China. Climate Services, 2017, 5, 39-45.	2.5	45
14	The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 105-116.	2.7	42
15	Using the Twentieth Century Reanalysis to assess climate variability for the European wind industry. Theoretical and Applied Climatology, 2017, 127, 61-80.	2.8	39
16	Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall. Advances in Atmospheric Sciences, 2018, 35, 918-926.	4.3	34
17	European wind variability over 140 yr. Advances in Science and Research, 2013, 10, 51-58.	1.0	28
18	Seasonal forecast skill for extratropical cyclones and windstorms. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 92-104.	2.7	27

#	Article	IF	CITATIONS
19	The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña. Environmental Research Letters, 2018, 13, 024015.	5.2	27
20	Co-development of a seasonal rainfall forecast service: Supporting flood risk management for the Yangtze River basin. Climate Risk Management, 2019, 23, 43-49.	3.2	24
21	The Seasonal Prediction of the Exceptional Yangtze River Rainfall in Summer 2020. Advances in Atmospheric Sciences, 2021, 38, 2055-2066.	4.3	23
22	CFHTLenS: weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1432-1452.	4.4	22
23	Skilful seasonal prediction of winter gas demand. Environmental Research Letters, 2019, 14, 024009.	5.2	21
24	Creating a proof-of-concept climate service to assess future renewable energy mixes in Europe: An overview of the C3S ECEM project. Advances in Science and Research, 0, 15, 191-205.	1.0	21
25	Spin flips – II. Evolution of dark matter halo spin orientation, and its correlation with major mergers. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1338-1355.	4.4	19
26	Predicting June Mean Rainfall in the Middle/Lower Yangtze River Basin. Advances in Atmospheric Sciences, 2020, 37, 29-41.	4.3	19
27	Advancing climate services for the European renewable energy sector through capacity building and user engagement. Climate Services, 2019, 16, 100139.	2.5	18
28	What chance of a sudden stratospheric warming in the southern hemisphere?. Environmental Research Letters, 2020, 15, 104038.	5.2	18
29	Predictability of European Winters 2017/2018 and 2018/2019: Contrasting influences from the Tropics and stratosphere. Atmospheric Science Letters, 2021, 22, e1009.	1.9	14
30	Skill and Reliability of Seasonal Forecasts for the Chinese Energy Sector. Journal of Applied Meteorology and Climatology, 2017, 56, 3099-3114.	1.5	13
31	Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5. Advances in Atmospheric Sciences, 2018, 35, 955-964.	4.3	12
32	The Process and Benefits of Developing Prototype Climate Services—Examples in China. Journal of Meteorological Research, 2020, 34, 893-903.	2.4	12
33	Verification of the 2019 GloSea5 Seasonal Tropical Cyclone Landfall Forecast for East China. Journal of Meteorological Research, 2020, 34, 917-925.	2.4	11
34	Seasonal Rainfall Forecasts for the Yangtze River Basin of China in Summer 2019 from an Improved Climate Service. Journal of Meteorological Research, 2020, 34, 904-916.	2.4	11
35	Assessing the Skill and Reliability of Seasonal Climate Forecasts in Sahelian West Africa. Weather and Forecasting, 2020, 35, 1035-1050.	1.4	11
36	Skillful seasonal prediction of key carbon cycle components: NPP and fire risk. Environmental Research Communications, 2020, 2, 055002.	2.3	9

PHILIP BETT

#	Article	IF	CITATIONS
37	An alert system for Seasonal Fire probability forecast for South American Protected Areas. Climate Resilience and Sustainability, 2022, $1,\dots$	2.3	9
38	Investigating the impact of climate change on the UK wave power climate. Meteorologische Zeitschrift, 2017, 26, 291-306.	1.0	7
39	Seasonal Rainfall Forecasts for the Yangtze River Basin in the Extreme Summer of 2020. Advances in Atmospheric Sciences, 2021, 38, 2212-2220.	4.3	7
40	Skilful seasonal prediction of winter wind speeds in China. Climate Dynamics, 2019, 53, 3937-3955.	3.8	6
41	Spin Flips: Variation in the Orientation of Dark Matter Halos Over Their Merger Histories. , 2010, , .		0