Xiao-Bo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4554014/publications.pdf

Version: 2024-02-01

207 papers

10,656 citations

55 h-index 94 g-index

212 all docs 212 docs citations

times ranked

212

11108 citing authors

#	Article	IF	CITATIONS
1	Effects of Laser Surface Remelting on Microstructure and Corrosion Properties of Mg-12Dy-1.1Ni Alloy. Journal of Materials Engineering and Performance, 2023, 32, 2587-2597.	1.2	2
2	Excellent plasma electrolytic oxidation coating on AZ61 magnesium alloy under ordinal discharge mode. Journal of Magnesium and Alloys, 2022, 10, 2460-2474.	5 . 5	10
3	Protein conformation and electric attraction adsorption mechanisms on anodized magnesium alloy by molecular dynamics simulations. Journal of Magnesium and Alloys, 2022, 10, 3143-3155.	5.5	12
4	Influences of Porosity on the In-Vitro Cell Responses of Cold Sprayed Ti-Ta Composites. Lecture Notes in Mechanical Engineering, 2022, , 181-184.	0.3	0
5	Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. Journal of Membrane Science, 2022, 645, 120193.	4.1	15
6	Permanganate, Molybdate and Vanadate Conversion Coatings., 2022,, 113-131.		1
7	Marine Vibrio spp. protect carbon steel against corrosion through secreting extracellular polymeric substances. Npj Materials Degradation, 2022, 6, .	2.6	15
8	Stable isomeric layered indium coordination polymers for high proton conduction. CrystEngComm, 2022, 24, 294-299.	1.3	2
9	Quorum sensing inhibitors applications: A new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry, 2022, 145, 108050.	2.4	27
10	Fabrication of uniform and anti-corrosion layered double hydroxides film on Mg-Gd-Y-Zn-Zr alloy through solution pH tailoring. Electrochimica Acta, 2022, 411, 140057.	2.6	8
11	Gallium–Strontium Phosphate Conversion Coatings for Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopedic Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2709-2723.	2.6	3
12	In vitro degradation resistance of glucose and L-cysteine-bioinspired Schiff-base anodic Ca–P coating on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2022, 32, 1485-1500.	1.7	9
13	Ultrafine Sb nanoparticles <i>in situ</i> confined in covalent organic frameworks for high-performance sodium-ion battery anodes. Journal of Materials Chemistry A, 2022, 10, 15089-15100.	5.2	19
14	Visible-Light-Responsive UiO-66(Zr) with Defects Efficiently Promoting Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 28977-28984.	4.0	33
15	Origin of the Photocatalytic Activity of Crystalline Phase Structures. ACS Applied Energy Materials, 2022, 5, 8923-8929.	2.5	2
16	New design principles for the bath towards chromate- and crack-free conversion coatings on magnesium alloys. Journal of Magnesium and Alloys, 2021, 9, 505-519.	5.5	30
17	Endowing magnesium with the corrosion-resistance property through cross-linking polymerized inorganic sol–gel coating. RSC Advances, 2021, 11, 4365-4372.	1.7	7
18	Porous organic polymer enriched in Re functional units and Lewis base sites for efficient CO ₂ photoreduction. Catalysis Science and Technology, 2021, 11, 7300-7306.	2.1	6

#	Article	IF	Citations
19	Sluggish precipitation strengthening in Al–Li alloy with a high concentration of Mg. Journal of Materials Research and Technology, 2021, 11, 1806-1815.	2.6	9
20	Inhibiting corrosion of aluminum alloy 5083 through Vibrio species biofilm. Corrosion Science, 2021, 180, 109188.	3.0	27
21	Improved corrosion resistance of AZ31 Mg alloy coated with MXenes/MgAl-LDHs composite layer modified with yttrium. Electrochimica Acta, 2021, 374, 137913.	2.6	58
22	Hybrid additive manufacturing of biocompatible Ti–Ta composite structures for biomedical applications. Journal of Materials Research, 2021, 36, 3679.	1.2	10
23	Effects of fluoride ions as electrolyte additives for a PEO/Ni-P composite coating onto Mg alloy AZ31B. Surface and Coatings Technology, 2021, 417, 126883.	2.2	22
24	Evading strength-corrosion tradeoff in Mg alloys via dense ultrafine twins. Nature Communications, 2021, 12, 4616.	5.8	126
25	A Lactoglobulin-Composite Self-Healing Coating for Mg Alloys. ACS Applied Bio Materials, 2021, 4, 6843-6852.	2.3	4
26	Nanofiber Composite Coating with Self-Healing and Active Anticorrosive Performances. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57880-57892.	4.0	47
27	Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides. Journal of Materials Science and Technology, 2020, 37, 104-113.	5.6	25
28	A new generation of energy storage electrode materials constructed from carbon dots. Materials Chemistry Frontiers, 2020, 4, 729-749.	3.2	70
29	Tunable morphology and the changeable catalytic property of layered scandium coordination polymer. Journal of Solid State Chemistry, 2020, 283, 121151.	1.4	3
30	Construction of luminescent coordination polymers based on 5-(1-(carboxymethyl)-pyrazol-3-yl)isophthalic ligand for sensing Cu2+ and acetone. Polyhedron, 2020, 177, 114314.	1.0	7
31	Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 41, 43-55.	5.6	80
32	Self-assembly engineering toward large-area defect-rich TiO2(B) nanosheets-based free-standing films for high-performance lithium-ion batteries. Journal of Power Sources, 2020, 448, 227458.	4.0	18
33	Stimuliâ€Responsive Luminescent Properties of Tetraphenyletheneâ€Based Strontium and Cobalt Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 19884-19889.	1.6	8
34	In-situ self-assembly host-guest carbon aerogels for robust electrochemical capacitors. Electrochimica Acta, 2020, 364, 137285.	2.6	8
35	Laser polished fused deposition poly-lactic acid objects for personalized orthopaedic application. SN Applied Sciences, 2020, 2, 1.	1.5	10
36	Comparison on corrosion resistance and surface film of pure Mg and Mgâ^'14Li alloy. Transactions of Nonferrous Metals Society of China, 2020, 30, 2413-2423.	1.7	16

#	Article	IF	Citations
37	Honeycomb-like porous metallic glasses decorated by Cu nanoparticles formed by one-pot electrochemically galvanostatic etching. Materials and Design, 2020, 196, 109109.	3.3	9
38	Carbon aerogels with mutual support structures constructed by hybrid hydrogels: Robust energy storage materials. Materials Today Communications, 2020, 25, 101444.	0.9	2
39	Amino-MIL-53(Al)-Nanosheets@Nafion Composite Membranes with Improved Proton/Methanol Selectivity for Passive Direct Methanol Fuel Cells. Industrial & Engineering Chemistry Research, 2020, 59, 14825-14833.	1.8	20
40	Synergistic Coating Strategy Combining Photodynamic Therapy and Fluoride-Free Superhydrophobicity for Eradicating Bacterial Adhesion and Reinforcing Corrosion Protection. ACS Applied Materials & amp; Interfaces, 2020, 12, 46862-46873.	4.0	27
41	Stimuliâ€Responsive Luminescent Properties of Tetraphenyletheneâ€Based Strontium and Cobalt Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 19716-19721.	7.2	70
42	Fragmentation of 18R LPSO phases through multi-pass equal channel angular pressing and its impact on rollability of Mg97Y2Zn1 (at%) alloy. Journal of Materials Research and Technology, 2020, 9, 14865-14877.	2.6	18
43	Integrated Carbon Dots-Matrix Structures: An Efficient Strategy for High-Performance Electric Double Layer Capacitors. ACS Applied Energy Materials, 2020, 3, 4958-4964.	2.5	5
44	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	1.1	180
45	Integrating Carbon Dots with Porous Hydrogels to Produce Full Carbon Electrodes for Electric Double-Layer Capacitors. ACS Applied Energy Materials, 2020, 3, 6907-6914.	2.5	27
46	Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys. Journal of Materials Science and Technology, 2020, 51, 79-83.	5.6	15
47	Microbial ingress and in vitro degradation enhanced by glucose on bioabsorbable Mg–Li–Ca alloy. Bioactive Materials, 2020, 5, 902-916.	8.6	12
48	Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8, 42-65.	5.5	274
49	In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 47, 52-67.	5.6	55
50	A comparative study of cell growth on a cold sprayed Ti–Ta composite. Journal of Alloys and Compounds, 2020, 826, 154014.	2.8	11
51	A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chemical Communications, 2020, 56, 5389-5392.	2.2	49
52	Network Structural CNTs Penetrate Porous Carbon Support for Phaseâ€Change Materials with Enhanced Electroâ€Thermal Performance. Advanced Electronic Materials, 2020, 6, 1901428.	2.6	26
53	Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials. Solar Energy Materials and Solar Cells, 2019, 201, 110122.	3.0	44
54	In vitro corrosion of pure Mg in phosphate buffer solutionâ€"Influences of isoelectric point and molecular structure of amino acids. Materials Science and Engineering C, 2019, 105, 110042.	3.8	33

#	Article	IF	Citations
55	Selective Laser Melting of Duplex Stainless Steel 2205: Effect of Post-Processing Heat Treatment on Microstructure, Mechanical Properties, and Corrosion Resistance. Materials, 2019, 12, 2468.	1.3	73
56	Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution. Corrosion Science, 2019, 159, 108133.	3.0	79
57	Two scandium coordination polymers: rapid synthesis and catalytic properties. CrystEngComm, 2019, 21, 5261-5268.	1.3	7
58	Corrosion and Wear Resistance of Microâ€Arc Oxidation Composite Coatings on Magnesium Alloy AZ31â€"The Influence of Inclusions of Carbon Spheres. Advanced Engineering Materials, 2019, 21, 1900446.	1.6	38
59	Delicately designed Sn-based electrode material via spray pyrolysis for high performance lithium-ion battery. Electrochimica Acta, 2019, 318, 542-550.	2.6	16
60	Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomaterialia, 2019, 98, 196-214.	4.1	114
61	Improving in vitro and in vivo antibacterial functionality of Mg alloys through micro-alloying with Sr and Ga. Materials Science and Engineering C, 2019, 104, 109926.	3.8	42
62	Investigating ion release using inline ICP during in situ scratch testing of an Mg-Li(-Al-Y-Zr) alloy. Electrochemistry Communications, 2019, 99, 46-50.	2.3	24
63	Three layer-structured cadmium coordination polymers based on flexible 5-(4-pyridyl)-methoxylisophthalic acid: rapid synthesis and luminescence sensing. CrystEngComm, 2019, 21, 1001-1008.	1.3	18
64	Recent Advances in LPSO-Containing Wrought Magnesium Alloys: Relationships Between Processing, Microstructure, and Mechanical Properties. Jom, 2019, 71, 3314-3327.	0.9	64
65	Design and preparation of nanoporous Ag–Cu alloys by dealloying Mg–(Ag,Cu)–Y metallic glasses for antibacterial applications. Journal of Materials Chemistry B, 2019, 7, 4169-4176.	2.9	30
66	Fabrication and characterization of an actively protective Mg-Al LDHs/Al2O3 composite coating on magnesium alloy AZ31. Applied Surface Science, 2019, 487, 558-568.	3.1	59
67	Corrosion resistance of Mg(OH)2/Mg–Al-layered double hydroxide coatings on magnesium alloy AZ31: influence of hydrolysis degree of silane. Rare Metals, 2019, 38, 629-641.	3.6	52
68	Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance. Chemical Research in Chinese Universities, 2019, 35, 171-178.	1.3	13
69	Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg-3Al-4.3Ca-0.1Mn. Corrosion Science, 2019, 151, 143-153.	3.0	40
70	Efficient Oxygen Electrocatalyst for Zn–Air Batteries: Carbon Dots and Co ₉ S ₈ Nanoparticles in a N,S-Codoped Carbon Matrix. ACS Applied Materials & Amp; Interfaces, 2019, 11, 14085-14094.	4.0	96
71	Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA. Rare Metals, 2019, 38, 520-531.	3.6	45
72	Ratio of total acidity to pH value of coating bath: A new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys. Corrosion Science, 2019, 150, 279-295.	3.0	78

#	Article	IF	CITATIONS
73	Corrosion resistance of bioinspired DNA-induced Ca–P coating on biodegradable magnesium alloy. Journal of Magnesium and Alloys, 2019, 7, 144-154.	5.5	68
74	Analysing the degree of sensitisation in 5xxx series aluminium alloys using artificial neural networks: A tool for alloy design. Corrosion Science, 2019, 150, 268-278.	3.0	28
75	A non-luminescent Eu-MOF-based "turn-on―sensor towards an anthrax biomarker through single-crystal to single-crystal phase transition. Chemical Communications, 2019, 55, 14918-14921.	2.2	64
76	Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal, 2019, 356, 227-235.	6.6	185
77	Electrochemical Hydrogen Evolution at the Interface of Monolayer VS ₂ and Water from First-Principles Calculations. ACS Applied Materials & Electrochemical Hydrogen Evolution at the Interface of Monolayer VS ₂ and Water from First-Principles Calculations. ACS Applied Materials & Electrochemical Hydrogen Evolution at the Interface of Monolayer VS ₂	4.0	20
78	Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12. Talanta, 2019, 195, 117-126.	2.9	52
79	Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions. Journal of Colloid and Interface Science, 2019, 537, 716-724.	5.0	63
80	Investigating the Structure of the Surface Film on a Corrosion Resistant Mg-Li(-Al-Y-Zr) Alloy. Corrosion, 2019, 75, 80-89.	0.5	23
81	Dual functions of chloride ions on corrosion behavior of mild steel in CO ₂ saturated aqueous solutions. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 888-896.	0.8	12
82	Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. Journal of Materials Science and Technology, 2019, 35, 535-544.	5.6	171
83	Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure magnesium. Applied Surface Science, 2019, 465, 1066-1077.	3.1	97
84	An in-based 3D metal-organic framework as heterogeneous Lewis acid catalyst for multi-component Strecker reactions. Inorganica Chimica Acta, 2018, 479, 165-171.	1.2	14
85	Preparation of porous carbon electrodes from semen cassiae for high-performance electric double-layer capacitors. New Journal of Chemistry, 2018, 42, 6763-6769.	1.4	29
86	Mercaptopropionic Acid-Capped Wurtzite Cu ₉ Sn ₂ Se ₉ Nanocrystals as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2018, 10, 1810-1818.	4.0	29
87	Solventâ€Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small, 2018, 14, e1800612.	5.2	449
88	Effect of coordinated water of hexahydrate on nickel platings from choline–urea ionic liquid. Journal of Materials Science, 2018, 53, 10758-10771.	1.7	15
89	Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy. Surface and Coatings Technology, 2018, 344, 1-11.	2.2	104
90	Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1453-1463.	1.0	1

#	Article	lF	CITATIONS
91	A double-layered photoanode made of ZnO/TiO2 composite nanoflowers and TiO2 nanorods for high efficiency dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 685-691.	1.2	19
92	Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study. Bioactive Materials, 2018, 3, 110-117.	8.6	25
93	Two 3D metalâ^'organic frameworks as multi-functional materials to detect Fe3+ ions and nitroaromatic explosives and to encapsulate Ln3+ ions for white-light emission. Journal of Solid State Chemistry, 2018, 258, 42-48.	1.4	17
94	Structure and orientation relationship of new precipitates in a Cu–Cr–Zr alloy. Materials Science and Technology, 2018, 34, 282-288.	0.8	14
95	Composition and microstructure dependent corrosion behaviour of Mg-Li alloys. Electrochimica Acta, 2018, 260, 55-64.	2.6	171
96	What is going on in magnesium alloys?. Journal of Materials Science and Technology, 2018, 34, 245-247.	5.6	487
97	Co3O4/carbon allotrope composites as anode material for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 830-831, 116-121.	1.9	10
98	Microstructure evolution and mechanical property improvement of aluminum alloys with high magnesium content during continuous rheo-extrusion. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 31-37.	2.6	21
99	Successful synthesis of interconnected Co0.85Se nanosheets with high pore volume and its electrochemical performance in supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 20564-20572.	1.1	3
100	Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration. Biomedical Materials (Bristol), 2018, 13, 065014.	1.7	42
101	Layer-structured lanthanide coordination polymers constructed from 3,5-bis(3,5-dicarboxylphenyl)-pyridine ligand as fluorescent probe for nitroaromatics and metal ions. Inorganica Chimica Acta, 2018, 483, 473-479.	1.2	16
102	In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Applied Surface Science, 2018, 457, 49-58.	3.1	57
103	Rational design of CNTs with encapsulated Co nanospheres as superior acid- and base-resistant microwave absorbers. Dalton Transactions, 2018, 47, 11554-11562.	1.6	17
104	Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS ₂ . Chemistry of Materials, 2018, 30, 5404-5411.	3.2	33
105	Precipitation, Recrystallization, and Evolution of Annealing Twins in a Cu-Cr-Zr Alloy. Metals, 2018, 8, 227.	1.0	21
106	In vitro corrosion of magnesium alloy AZ31 â€" a synergetic influence of glucose and Tris. Frontiers of Materials Science, 2018, 12, 184-197.	1.1	32
107	A 2D zinc coordination polymer constructed from long and flexible N -containing tricarboxylate ligand for encapsulating Ln 3+ ions and luminescent sensing. Inorganica Chimica Acta, 2018, 479, 213-220.	1.2	6
108	Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. Acta Biomaterialia, 2018, 79, 23-36.	4.1	338

#	Article	IF	Citations
109	Growth behavior of MgAl-layered double hydroxide films by conversion of anodic films on magnesium alloy AZ31 and their corrosion protection. Applied Surface Science, 2018, 456, 419-429.	3.1	120
110	InÂvitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy — The influence of intermetallic compound Mg2Ca. Journal of Alloys and Compounds, 2018, 764, 250-260.	2.8	95
111	In(III) and Sc(III) based coordination polymers derived from rigid benzimidazole-5,6-dicarboxylic acid: Synthesis, crystal structure and catalytic property. Polyhedron, 2018, 141, 369-376.	1.0	20
112	Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass. Corrosion Science, 2017, 119, 23-32.	3.0	34
113	Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Materials and Design, 2017, 121, 430-441.	3.3	147
114	A new strategy to fabricate nanoporous iron-based metallic glasses: Selective phase tailoring of amorphous-nanocrystalline composite alloys through electrochemical dissolution. Scripta Materialia, 2017, 133, 14-18.	2.6	27
115	Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet. Corrosion Science, 2017, 119, 14-22.	3.0	71
116	Application of Cu ₃ InSnSe ₅ Heteronanostructures as Counter Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18046-18053.	4.0	23
117	The mechanism of aqueous stress-corrosion cracking of $\hat{l}_{\pm}+\hat{l}_{\pm}^2$ titanium alloys. Corrosion Science, 2017, 125, 29-39.	3.0	36
118	Trade-Off between Gate Oxide Integrity and Transistor Performance for FinFET Technology. ECS Journal of Solid State Science and Technology, 2017, 6, N137-N141.	0.9	4
119	Construction of new zinc(II) coordination polymers by 1-(triazol-1-yl)-2,4,6-benzenetricarboxylate ligand for sensitizing lanthanide(III) ions and sensing small molecules. Journal of Solid State Chemistry, 2017, 253, 430-437.	1.4	7
120	Osteoanabolic Implant Materials for Orthopedic Treatment. Advanced Healthcare Materials, 2016, 5, 1740-1752.	3.9	29
121	Osteoanabolic Implants: Osteoanabolic Implant Materials for Orthopedic Treatment (Adv. Healthcare) Tj ETQq1 I	1 0 <u>,7</u> 8431	4 rgBT /Over
122	Stifling magnesium corrosion via a novel anodic coating. RSC Advances, 2016, 6, 43408-43417.	1.7	14
123	Carbon Dots/NiCo ₂ O ₄ Nanocomposites with Various Morphologies for High Performance Supercapacitors. Small, 2016, 12, 5927-5934.	5.2	190
124	Layer-structured coordination polymers based on 5-(1H-tetrazol-5-yl)isophthalic acid: structure, sensitization of lanthanide(iii) cations and small-molecule sensing. CrystEngComm, 2016, 18, 7126-7134.	1.3	10
125	Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Scientific Reports, 2016, 6, 29225.	1.6	132
126	Influence of surface chemistry on the formation of crystalline hydroxide coatings on Mg alloys in liquid water and steam systems. Corrosion Science, 2016, 113, 145-159.	3.0	59

#	Article	IF	Citations
127	Light-scattering photoanodes from double-layered mesoporous TiO 2 nanoparticles/SiO 2 nanospheres for dye-sensitized solar cells. Electrochimica Acta, 2016, 213, 1-7.	2.6	15
128	Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16071-16077.	4.0	69
129	A Combined Inhibiting Effect of Sodium Alginate and Sodium Phosphate on the Corrosion of Magnesium Alloy AZ31 in NaCl Solution. Journal of the Electrochemical Society, 2016, 163, C486-C494.	1.3	40
130	On the surface properties of biodegrading magnesium and its alloys: a survey and discussion. Surface Topography: Metrology and Properties, 2016, 4, 014005.	0.9	2
131	Investigating the Passivity and Dissolution of a Corrosion Resistant Mg-33at.%Li Alloy in Aqueous Chloride Using Online ICP-MS. Journal of the Electrochemical Society, 2016, 163, C324-C329.	1.3	61
132	An Initial Assessment of the Effects of Increased Ni and V Content in A356 and AA6063 Alloys. Minerals, Metals and Materials Series, 2016, , 39-45.	0.3	0
133	A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator. Scientific Reports, 2015, 5, 18266.	1.6	33
134	Facile Aluminum Reduction Synthesis of Blue TiO ₂ with Oxygen Deficiency for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 18309-18315.	1.7	32
135	In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium, with and without zinc. Journal of Materials Chemistry B, 2015, 3, 8874-8883.	2.9	29
136	Three Scandium Compounds with Unsaturated Coordinative Metal Sites - Structures and Catalysis. European Journal of Inorganic Chemistry, 2015, 2015, 931-938.	1.0	15
137	Lanthanide coordination polymers constructed from 5-(1H-tetrazol-5-yl)isophthalic acid ligand: white light emission and color tuning. CrystEngComm, 2015, 17, 6030-6036.	1.3	25
138	The Unexpected Role of Benzotriazole in Mitigating Magnesium Alloy Corrosion: A Nucleating Agent for Crystalline Nanostructured Magnesium Hydroxide Film. Journal of the Electrochemical Society, 2015, 162, C403-C411.	1.3	28
139	Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg–Zn–Y–Zr alloy. Corrosion Science, 2015, 92, 228-236.	3.0	82
140	Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect. Materials Characterization, 2015, 99, 200-209.	1.9	94
141	Sc ₂ (pydc) ₂ unit based 1D, 2D and 3D metal–organic frameworks as heterogeneous Lewis acid catalysts for cyanosilylation. Dalton Transactions, 2015, 44, 1942-1947.	1.6	30
142	Corrosion protection of magnesium and its alloys by metal phosphate conversion coatings. Surface Engineering, 2014, 30, 871-879.	1.1	45
143	Indium Metal–Organic Frameworks as High-Performance Heterogeneous Catalysts for the Synthesis of Amino Acid Derivatives. Inorganic Chemistry, 2014, 53, 10024-10026.	1.9	48
144	Effect of Vacuum System Base Pressure on Corrosion Resistance of Sputtered Al Thin Films. Journal of the Electrochemical Society, 2014, 161, C195-C200.	1.3	31

#	Article	IF	Citations
145	Synthesis and Self-Assembly of Large-Area Cu Nanosheets and Their Application as an Aqueous Conductive Ink on Flexible Electronics. ACS Applied Materials & Samp; Interfaces, 2014, 6, 622-629.	4.0	48
146	Electrosprayed PLGA smart containers for active anti-corrosion coating on magnesium alloy AMlite. Journal of Materials Chemistry A, 2014, 2, 5738.	5.2	61
147	Protective strontium phosphate coatings for magnesium biomaterials. Materials Science and Technology, 2014, 30, 521-526.	0.8	17
148	Technical Note:Experimental Survey of Corrosion Potentials for Rare Earth Metals Ce, Er, Gd, La, and Nd as a Function of pH and Chloride Concentration. Corrosion, 2014, 70, 323-328.	0.5	23
149	Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomaterialia, 2014, 10, 1463-1474.	4.1	135
150	A 3D In(III) coordination polymer derived from rigid dicarboxylate ligand: Synthesis, crystal structure and catalytic property. Inorganica Chimica Acta, 2014, 411, 35-39.	1.2	9
151	A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D. Corrosion Science, 2014, 79, 41-49.	3.0	62
152	Investigating the Effect of Water Content in Supercritical CO2 as Relevant to the Corrosion of Carbon Capture and Storage Pipelines. Corrosion, 2014, 70, 185-195.	0.5	48
153	Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging. Nanotechnology, 2014, 25, 205604.	1.3	71
154	The Effect of Trace Levels of Ni And V on the Microstructure and Properties of Four Common Aluminum Alloys. , 2014, , 969-974.		1
155	Thermodynamics of the formation of face-centered-cubic silicon nanocrystals in silicon-rich SiC thin films annealed using rapid thermal annealing. Applied Surface Science, 2013, 265, 286-290.	3.1	10
156	Double-layered manganese phosphate conversion coating on magnesium alloy AZ91D: Insights into coating formation, growth and corrosion resistance. Surface and Coatings Technology, 2013, 217, 147-155.	2.2	107
157	Synthesis of multiple-shell porous CeO2 hollow spheres by a hydrogel template method. Materials Letters, 2013, 107, 42-45.	1.3	9
158	Technology vision. Surface Engineering, 2013, 29, 329-330.	1.1	3
159	Corrosion-resistant coatings for magnesium (Mg) alloys. , 2013, , 282-312.		10
160	Corrosion-resistant electrochemical plating of magnesium (Mg) alloys. , 2013, , 315-346.		6
161	<i>In vitro</i> corrosion survey of Mg– <i>x</i> Ca and Mg–3Zn– <i>y</i> Ca alloys with and without calcium phosphate conversion coatings. Corrosion Engineering Science and Technology, 2012, 47, 365-373.	0.7	27
162	Electrochemical cycling reversibility of LiMoS ₂ using first-principles calculations. Applied Physics Letters, 2012, 100, 263901.	1.5	23

#	Article	IF	CITATIONS
163	Corrosion-Resistant Electrochemical Platings on Magnesium Alloys: A State-of-the-Art Review. Corrosion, 2012, 68, 518-535.	0.5	44
164	Coating pretreatment for Mg alloy AZ91D. Applied Surface Science, 2012, 258, 5472-5481.	3.1	53
165	Fabrication of hydroxyapatite/stearic acid composite coating and corrosion behavior of coated magnesium alloy. Materials Letters, 2012, 88, 76-78.	1.3	66
166	Effect of [Ca 2+] and [<mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>PO</mml:mtext></mml:mrow><mml 2012,="" 226-232.<="" 55,="" alloy="" az91d.="" calcium="" coatings="" conversion="" corrosion="" die-cast="" formation="" levels="" magnesium="" of="" on="" phosphate="" science,="" td="" the=""><td>:mrow><r< td=""><td>nml:mn>4</td></r<></td></mml></mml:msubsup></mml:mrow></mml:math>	:mrow> <r< td=""><td>nml:mn>4</td></r<>	nml:mn>4
167	Conversion coatings of Mg-alloy AZ91D using trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl)amide ionic liquid. Science China Chemistry, 2012, 55, 1598-1607.	4.2	17
168	Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 2012, 48, 7955.	2.2	830
169	Magnesium: Engineering the Surface. Jom, 2012, 64, 650-656.	0.9	10
170	On the electrodeposition of nickel–zinc alloys from a eutectic-based ionic liquid. Electrochimica Acta, 2012, 63, 131-138.	2.6	102
171	Review of Corrosion-Resistant Conversion Coatings for Magnesium and Its Alloys. Corrosion, 2011, 67, 035005-1-035005-16.	0.5	265
172	A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium. Corrosion Science, 2011, 53, 2263-2268.	3.0	144
173	Electrochemical behaviour and corrosion of Mg–Y alloys. Corrosion Science, 2011, 53, 2277-2282.	3.0	193
174	In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium–zirconium alloy. Materials Science and Engineering C, 2011, 31, 1545-1552.	3.8	12
175	High-light induced singlet oxygen formation in cytochrome b6f complex from Bryopsis corticulans as detected by EPR spectroscopy. Biophysical Chemistry, 2010, 146, 7-12.	1.5	20
176	Cobalt-doping effects in single crystalline and polycrystalline EuFe2â^'x Co x As2 compounds. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1212-1215.	2.0	6
177	Synthesis and luminescence properties of needle-like SrAl2O4:Eu, Dy phosphor via a hydrothermal co-precipitation method. Journal of Physics and Chemistry of Solids, 2010, 71, 1026-1030.	1.9	76
178	Phase Evolution and Photoluminescence of Eu3+-Doped ZrO2. Journal of Nanoscience and Nanotechnology, 2010, 10, 1800-1807.	0.9	11
179	Two Iodoargentate Hybrid Coordination Polymers Induced by Transition-Metal Complexes: Structures and Properties. Crystal Growth and Design, 2010, 10, 1068-1073.	1.4	69
180	Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomaterialia, 2009, 5, 1808-1820.	4.1	90

#	Article	IF	CITATIONS
181	Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Materials Science and Engineering C, 2009, 29, 165-171.	3.8	59
182	The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia, 2009, 5, 2290-2302.	4.1	61
183	Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Biotechnology and Bioengineering, 2008, 101, 378-387.	1.7	109
184	Synthesis of Ti–Sn–Nb alloy by powder metallurgy. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 562-570.	2.6	52
185	A New Hybrid Optical Semiconductor Based on Polymeric Iodoplumbate Co-Templated by Both Organic Cation and Polyiodide Anion. Crystal Growth and Design, 2008, 8, 4355-4358.	1.4	47
186	Comparative studies on wear behaviour between as cast AZ91 and Mg ₉₇ Zn ₁ Y ₂ magnesium alloys. Materials Science and Technology, 2007, 23, 1208-1214.	0.8	7
187	In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode. Journal of the Electrochemical Society, 2007, 154, D516.	1.3	14
188	Rapid purification of photosystem I chlorophyll-binding proteins by differential centrifugation and vertical rotor. Photosynthesis Research, 2007, 90, 195-204.	1.6	14
189	Hydrogen peroxide-induced chlorophyll a bleaching in the cytochrome b 6 f complex: a simple and effective assay for stability of the complex in detergent solutions. Photosynthesis Research, 2007, 90, 205-214.	1.6	9
190	Middle-field formulation for the computation of wave-drift loads. Journal of Engineering Mathematics, 2007, 59, 61-82.	0.6	59
191	Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation. Transactions of Nonferrous Metals Society of China, 2006, 16, s744-s748.	1.7	45
192	Ga3(HPO3)4F4(H3DETA) (DETA=diethylenetriamine): A new open-framework fluorinated gallium phosphite with pentameric building unit. Journal of Solid State Chemistry, 2006, 179, 824-829.	1.4	18
193	Study on energy transfer between carotenoid and chlorophyll a in cytochrome b 6 f complex from Bryopsis corticulans. Photosynthesis Research, 2006, 88, 43-50.	1.6	6
194	Hydrothermal synthesis and characterization of a zinc-substituted gallium phosphite, [H3N(CH2)2NH3]1/2· [GaZn(HPO3)3(H2O)2]. Inorganica Chimica Acta, 2005, 358, 4505-4510.	1.2	4
195	(H3NC2H4NH3)[In(OH)3(HPO3)]: the first organically templated indium phosphite. Inorganic Chemistry Communication, 2005, 8, 271-273.	1.8	15
196	Synthesis and characterization of an organically-templated zincophosphite: [C6H16N2]·Zn3(HPO3)4. Solid State Sciences, 2004, 6, 225-228.	1.5	12
197	Hydrothermal synthesis and structural characterization of two organically templated zincophosphites with three-dimensional frameworks, (C6H14N2)Ā·[Zn3(HPO3)4] and (C4H12N2)Ā·[Zn3(HPO3)4]. Journal of Solid State Chemistry, 2004, 177, 80-88.	1.4	17
198	Synthesis and Characterization of an Organically-Templated Zincophosphite: [C6H16N2] ×Zn3(HPO3)4 ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	Citations
199	The First Organically Templated Beryllium Phosphite [NH3(CH2)3NH3]·Be3 (HPO3)4:  Hydrothermal Synthesis and X-ray Crystal Structure. Crystal Growth and Design, 2004, 4, 297-300.	1.4	45
200	Two Three-Dimensional Metalâ^'Organic Frameworks from Secondary Building Units of		