Dianhua Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553925/publications.pdf

Version: 2024-02-01

88 papers 9,502 citations

41 h-index 75989 78 g-index

97 all docs 97
docs citations

97 times ranked 12885 citing authors

#	Article	IF	CITATIONS
1	Stem Cells and Progenitor Cells in Interstitial Lung Disease. , 2022, , 158-168.		2
2	Abnormal respiratory progenitors in fibrotic lung injury. Stem Cell Research and Therapy, 2022, 13, 64.	2.4	10
3	The ZIP8/SIRT1 axis regulates alveolar progenitor cell renewal in aging and idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2022, 132, .	3.9	37
4	Targeting FSTL1 for Multiple Fibrotic and Systemic Autoimmune Diseases. Molecular Therapy, 2021, 29, 347-364.	3.7	18
5	Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 707-717.	2.5	204
6	Disruption of respiratory epithelial basement membrane in COVID-19 patients. Molecular Biomedicine, 2021, 2, 8.	1.7	4
7	Antibody-mediated depletion of CCR10+ EphA3+ cells ameliorates fibrosis in IPF. JCI Insight, 2021, 6, .	2.3	9
8	VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway. Developmental Cell, 2021, 56, 1646-1660.e5.	3.1	13
9	Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Science Advances, 2021, 7, .	4.7	10
10	Categorization of lung mesenchymal cells in development and fibrosis. IScience, 2021, 24, 102551.	1.9	46
11	Single-Cell Reconstruction of Human Basal Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1540-1550.	2.5	107
12	Targeting Follistatin like 1 ameliorates liver fibrosis induced by carbon tetrachloride through TGF-i ² 1-miR29a in mice. Cell Communication and Signaling, 2020, 18, 151.	2.7	16
13	TRIM72 promotes alveolar epithelial cell membrane repair and ameliorates lung fibrosis. Respiratory Research, 2020, 21, 132.	1.4	13
14	Mitogen-activated Protein Kinase–activated Protein Kinase 2 Inhibition Attenuates Fibroblast Invasion and Severe Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 41-48.	1.4	18
15	Interleukin- 11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine, 2019, 11 , .	5.8	189
16	Hyaluronan synthase $2\hat{a}\in$ "mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Science Translational Medicine, 2019, 11, .	5.8	91
17	A Long Noncoding RNA links TGF- \hat{l}^2 Signaling in Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 123-125.	2.5	15
18	Proliferative regulation of alveolar epithelial type 2 progenitor cells by human <i>Scnn1d</i> gene. Theranostics, 2019, 9, 8155-8170.	4.6	12

#	Article	lF	CITATIONS
19	PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight, 2019, 4, .	2.3	64
20	Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCI Insight, 2019, 4, .	2.3	50
21	Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1443-1456.	2.5	66
22	Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. American Journal of Pathology, 2018, 188, 1094-1103.	1.9	38
23	Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Reports, 2018, 22, 3625-3640.	2.9	392
24	CD44high alveolar type II cells show stem cell properties during steady-state alveolar homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L41-L51.	1.3	18
25	Targeted <i>HAS2</i> Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 702-710.	1.4	5
26	MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 721-732.	1.4	46
27	Tsp1 promotes alveolar stem cell proliferation and its down-regulation relates to lung inflammation in intralobar pulmonary sequestration. Oncotarget, 2017, 8, 64867-64877.	0.8	8
28	miR-130b-3p Modulates Epithelial-Mesenchymal Crosstalk in Lung Fibrosis by Targeting IGF-1. PLoS ONE, 2016, 11, e0150418.	1.1	45
29	Apical Secretion of FSTL1 in the Respiratory Epithelium for Normal Lung Development. PLoS ONE, 2016, 11, e0158385.	1.1	5
30	Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nature Medicine, 2016, 22, 1285-1293.	15.2	211
31	Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biology, 2016, 55, 35-48.	1.5	72
32	Hyaluronan as a therapeutic target in human diseases. Advanced Drug Delivery Reviews, 2016, 97, 186-203.	6.6	167
33	miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways. JCI Insight, 2016, 1, e90301.	2.3	37
34	Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. Journal of Clinical Investigation, 2016, 126, 3063-3079.	3.9	101
35	Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Scientific Reports, 2015, 5, 14910.	1.6	35
36	Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis. Respiratory Research, 2015, 16, 124.	1.4	39

#	Article	IF	CITATIONS
37	Group B Streptococcus Evades Host Immunity by Degrading Hyaluronan. Cell Host and Microbe, 2015, 18, 694-704.	5.1	66
38	Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Experimental Medicine, 2015, 212, 235-252.	4.2	130
39	Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase. Laboratory Investigation, 2015, 95, 846-859.	1.7	25
40	Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Cell Biology, 2015, 208, 2082OIA1.	2.3	0
41	G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Experimental Biology and Medicine, 2014, 239, 686-696.	1.1	8
42	Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Research, 2014, 24, 1374-1377.	5.7	125
43	\hat{l}^2 -Arrestins in the Immune System. Progress in Molecular Biology and Translational Science, 2013, 118, 359-393.	0.9	21
44	Meta-Analysis of Genetic Programs between Idiopathic Pulmonary Fibrosis and Sarcoidosis. PLoS ONE, 2013, 8, e71059.	1.1	17
45	Rapamycin Inhibits Transforming Growth Factor \hat{I}^21 -Induced Fibrogenesis in Primary Human Lung Fibroblasts. Yonsei Medical Journal, 2013, 54, 437.	0.9	29
46	Creation of Lung-Targeted Dexamethasone Immunoliposome and Its Therapeutic Effect on Bleomycin-Induced Lung Injury in Rats. PLoS ONE, 2013, 8, e58275.	1.1	24
47	A Critical Regulatory Role for Macrophage Migration Inhibitory Factor in Hyperoxia-Induced Injury in the Developing Murine Lung. PLoS ONE, 2013, 8, e60560.	1.1	38
48	A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L933-L940.	1,3	45
49	Long-Term Exposure of Chemokine CXCL10 Causes Bronchiolitis-like Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 592-598.	1.4	12
50	MicroRNA-127 Inhibits Lung Inflammation by Targeting IgG FcÎ ³ Receptor I. Journal of Immunology, 2012, 188, 2437-2444.	0.4	93
51	Follistatin-Like 1 Promotes TGF- \hat{A}^21 -Induced Epithelial-Mesenchymal Transition In A549 Cells. , $2012,$, .		0
52	Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin-Induced Lung Injury. Stem Cells, 2012, 30, 1948-1960.	1.4	171
53	Pulmonary fibrosis: patterns and perpetrators. Journal of Clinical Investigation, 2012, 122, 2756-2762.	3.9	429
54	Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Experimental Medicine, 2011, 208, 1459-1471.	4.2	322

#	Article	IF	Citations
55	Role of hyaluronan and hyaluronan-binding proteins inÂhuman asthma. Journal of Allergy and Clinical Immunology, 2011, 128, 403-411.e3.	1.5	89
56	Innate immune activation potentiates alloimmune lung disease independent of chemokine (C-X-C motif) receptor 3. Journal of Heart and Lung Transplantation, 2011, 30, 717-725.	0.3	17
57	Human leukocyte antigen-A, -B, and -DRB1 alleles and sarcoidosis in Chinese Han subjects. Human Immunology, 2011, 72, 571-575.	1.2	24
58	Human Leukocyte Antigen-DRB1 Alleles Influence Diffuse Panbronchiolitis In Chinese Han Subjects. , 2011, , .		0
59	Effect of Azithromycin on Patients with Diffuse Panbronchiolitis: Retrospective Study of 51 Cases. Internal Medicine, 2011, 50, 1663-1669.	0.3	33
60	Recruited Exudative Macrophages Selectively Produce CXCL10 after Noninfectious Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 781-788.	1.4	57
61	Î ² -Arrestin Deficiency Protects Against Pulmonary Fibrosis in Mice and Prevents Fibroblast Invasion of Extracellular Matrix. Science Translational Medicine, 2011, 3, 74ra23.	5.8	81
62	Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7058-7063.	3.3	197
63	Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews, 2011, 91, 221-264.	13.1	848
64	Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation. Physiological Genomics, 2011, 43, 479-487.	1.0	95
65	Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Cell Biology, 2011, 194, i3-i3.	2.3	0
66	Role of Endoplasmic Reticulum Stress In The Pathogenesis Of Acute Exacerbations Of Pulmonary Fibrosis. , 2010, , .		0
67	Regulation of Nonâ€Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan. Anatomical Record, 2010, 293, 982-985.	0.8	54
68	Unrelenting Lung Fibrosis Requires An Invasive Myofibroblast Phenotype Regulated By Hyaluronan And CD44. , 2010, , .		0
69	A Beneficial Role Of Mir-29 In Limiting Lung Injury And Fibrosis. , 2010, , .		0
70	Exudative Macrophages But Not Alveolar Macrophages are The Main Source Of IP-10 After Non-infectious/Fibrotic Lung Injury. , 2010, , .		0
71	CD44 Deficiency Is Associated with Increased Bacterial Clearance but Enhanced Lung Inflammation During Gram-Negative Pneumonia. American Journal of Pathology, 2010, 177, 2483-2494.	1.9	43
72	Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. Journal of Clinical Investigation, 2010, 120, 2049-2057.	3.9	140

#	Article	lF	Citations
73	CXCR3-Chemokine Pathway in a Model of Murine Alloimmune Lymphocytic Bronchiolitis (AlloLB), 2009,,.		О
74	Extracellular Superoxide Dismutase Inhibits Inflammation by Preventing Oxidative Fragmentation of Hyaluronan. Journal of Biological Chemistry, 2008, 283, 6058-6066.	1.6	159
75	Serum Inter–α-Trypsin Inhibitor and Matrix Hyaluronan Promote Angiogenesis in Fibrotic Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 939-947.	2.5	49
76	CD44 Is a Negative Regulator of Acute Pulmonary Inflammation and Lipopolysaccharide-TLR Signaling in Mouse Macrophages. Journal of Immunology, 2007, 178, 2469-2475.	0.4	127
77	Hyaluronan in Tissue Injury and Repair. Annual Review of Cell and Developmental Biology, 2007, 23, 435-461.	4.0	727
78	The role of Toll-like receptors in non-infectious lung injury. Cell Research, 2006, 16, 693-701.	5.7	129
79	The Role of Hyaluronan Degradation Products as Innate Alloimmune Agonists. American Journal of Transplantation, 2006, 6, 2622-2635.	2.6	183
80	Matrix Regulation of Lung Injury, Inflammation, and Repair: The Role of Innate Immunity. Proceedings of the American Thoracic Society, 2006, 3, 401-404.	3.5	93
81	Innate Immune Regulation of Lung Injury and Repair. , 2006, , 110-117.		0
82	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11 , $1173-1179$.	15.2	1,291
83	Small Interfering RNA Targeting Heme Oxygenase-1 Enhances Ischemia-Reperfusion-induced Lung Apoptosis. Journal of Biological Chemistry, 2004, 279, 10677-10684.	1.6	230
84	Regulation of pulmonary fibrosis by chemokine receptor CXCR3. Journal of Clinical Investigation, 2004, 114, 291-299.	3.9	276
85	Resolution of Lung Inflammation by CD44. Science, 2002, 296, 155-158.	6.0	611
86	Defective cleavage of membrane bound TGFα leads to enhanced activation of the EGF receptor in malignant cells. Oncogene, 2000, 19, 1901-1914.	2.6	27
87	Expression of TGF $\hat{l}\pm$ autocrine activity in human colon carcinoma CBS cells is autoregulated and independent of exogenous epidermal growth factor. Journal of Cellular Physiology, 1998, 175, 174-183.	2.0	17
88	Autocrine Transforming Growth Factor $\hat{l}\pm$ Provides a Growth Advantage to Malignant Cells by Facilitating Re-entry into the Cell Cycle from Suboptimal Growth States. Journal of Biological Chemistry, 1998, 273, 31471-31479.	1.6	35