
Pekka Varmanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553891/publications.pdf Version: 2024-02-01

DERKA VADMANEN

#	Article	IF	CITATIONS
1	Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 2006, 71, 394-406.	3.6	530
2	Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 837-890.	6.6	487
3	Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gramâ€positive bacteria. Molecular Microbiology, 2007, 63, 1285-1295.	2.5	255
4	Proteomics and Transcriptomics Characterization of Bile Stress Response in Probiotic Lactobacillus rhamnosus GG. Molecular and Cellular Proteomics, 2011, 10, S1-S18.	3.8	167
5	Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. Journal of Proteomics, 2012, 75, 1357-1374.	2.4	130
6	Growth phaseâ€associated changes in the proteome and transcriptome of <i>Lactobacillus rhamnosus</i> GG in industrialâ€ŧype whey medium. Microbial Biotechnology, 2011, 4, 746-766.	4.2	77
7	Effect of heat-shock and bile salts on protein synthesis of <i>Bifidobacterium longum</i> revealed by [³⁵ S]methionine labelling and two-dimensional gel electrophoresis. FEMS Microbiology Letters, 2005, 248, 207-215.	1.8	60
8	New Insights into <i>Staphylococcus aureus</i> Stress Tolerance and Virulence Regulation from an Analysis of the Role of the ClpP Protease in the Strains Newman, COL, and SA564. Journal of Proteome Research, 2012, 11, 95-108.	3.7	59
9	Proteome Analysis of <i>Lactobacillus rhamnosus</i> GG Using 2-D DIGE and Mass Spectrometry Shows Differential Protein Production in Laboratory and Industrial-Type Growth Media. Journal of Proteome Research, 2009, 8, 4993-5007.	3.7	56
10	Alpha- and β-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Veterinary Microbiology, 2011, 149, 381-389.	1.9	56
11	Comparative Proteome Cataloging of Lactobacillus rhamnosus Strains GG and Lc705. Journal of Proteome Research, 2011, 10, 3460-3473.	3.7	53
12	Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Molecular Microbiology, 2001, 41, 93-103.	2.5	49
13	ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression The GenBank accession numbers for the nucleotide sequences of ctsR and ORF555 and their flanking regions are AJ249133 and AJ249134, respectively Microbiology (United Kingdom), 2000, 146, 1447-1455.	1.8	49
14	Characterization and Expression of the Lactobacillus helveticus pepC Gene Encoding a General Aminopeptidase. FEBS Journal, 1994, 224, 991-997.	0.2	48
15	Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Molecular Microbiology, 2003, 50, 609-621.	2.5	48
16	<i>In situ</i> production of active vitamin B12 in cereal matrices using <i>Propionibacterium freudenreichii</i> . Food Science and Nutrition, 2018, 6, 67-76.	3.4	48
17	Uncovering Surface-Exposed Antigens of <i>Lactobacillus rhamnosus</i> by Cell Shaving Proteomics and Two-Dimensional Immunoblotting. Journal of Proteome Research, 2015, 14, 1010-1024.	3.7	46
18	Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Frontiers in Microbiology, 2017, 8, 368.	3.5	42

Pekka Varmanen

#	Article	IF	CITATIONS
19	Characterization and expression of thepepNgene encoding a general aminopeptidase fromLactobacillus helveticus. FEMS Microbiology Letters, 1994, 124, 315-320.	1.8	41
20	Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in Wheat Bran for in situ Production of Vitamin B12. Frontiers in Microbiology, 2019, 10, 1541.	3.5	41
21	BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii. Microbial Cell Factories, 2015, 14, 186.	4.0	40
22	Molecular Characterization of a Stress-Inducible Gene from Lactobacillus helveticus. Journal of Bacteriology, 1998, 180, 6148-6153.	2.2	39
23	ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in <i>Lactobacillus gasseri</i> . Proteomics, 2008, 8, 1029-1041.	2.2	38
24	Effect of the lower ligand precursors on vitamin B12 production by food-grade Propionibacteria. LWT - Food Science and Technology, 2016, 72, 117-124.	5.2	38
25	In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii. Journal of Cereal Science, 2018, 81, 133-139.	3.7	35
26	Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting. Proteome Science, 2012, 10, 10.	1.7	34
27	Identification of a Novel Streptococcal Gene Cassette Mediating SOS Mutagenesis in Streptococcus uberis. Journal of Bacteriology, 2007, 189, 5210-5222.	2.2	30
28	Characterization of a Mobile clpL Gene from Lactobacillus rhamnosus. Applied and Environmental Microbiology, 2005, 71, 2061-2069.	3.1	29
29	Cloning and Characterization of a Prolinase Gene (<i>pepR</i>) from <i>Lactobacillus rhamnosus</i> . Applied and Environmental Microbiology, 1998, 64, 1831-1836.	3.1	29
30	Growth Mode and Carbon Source Impact the Surfaceome Dynamics of Lactobacillus rhamnosus GG. Frontiers in Microbiology, 2019, 10, 1272.	3.5	28
31	X-Prolyl Dipeptidyl Aminopeptidase Gene (pepX) Is Part of the glnRA Operon in Lactobacillus rhamnosus. Journal of Bacteriology, 2000, 182, 146-154.	2.2	26
32	Fermentation of cereal, pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification. LWT - Food Science and Technology, 2021, 137, 110431.	5.2	26
33	Complete genome sequence of Propionibacterium freudenreichii DSM 20271T. Standards in Genomic Sciences, 2015, 10, 83.	1.5	23
34	ClpE from Lactococcus lactis Promotes Repression of CtsR-Dependent Gene Expression. Journal of Bacteriology, 2003, 185, 5117-5124.	2.2	22
35	Characterization of a prolinase gene and its product and an adjacent ABC transporter gene from Lactobacillus helveticus. Microbiology (United Kingdom), 1996, 142, 809-816.	1.8	20
36	Aspergillus flavus growth inhibition by Lactobacillus strains isolated from traditional fermented Kenyan milk and maize products. Archives of Microbiology, 2017, 199, 457-464.	2.2	20

Pekka Varmanen

#	Article	IF	CITATIONS
37	Growth Mode and Physiological State of Cells Prior to Biofilm Formation Affect Immune Evasion and Persistence of Staphylococcus aureus. Microorganisms, 2020, 8, 106.	3.6	18
38	Ciprofloxacin induces mutagenesis to antibiotic resistance independent of UmuC in <i>Streptococcus uberis</i> . Environmental Microbiology, 2008, 10, 2179-2183.	3.8	17
39	Comparative Exoprotein Profiling of DifferentStaphylococcus epidermidisStrains Reveals Potential Link between Nonclassical Protein Export and Virulence. Journal of Proteome Research, 2014, 13, 3249-3261.	3.7	17
40	Genomics and Proteomics Provide New Insight into the Commensal and Pathogenic Lifestyles of Bovine- and Human-Associated <i>Staphylococcus epidermidis</i> Strains. Journal of Proteome Research, 2014, 13, 3748-3762.	3.7	16
41	De novo assembly of genomes from long sequence reads reveals uncharted territories of Propionibacterium freudenreichii. BMC Genomics, 2017, 18, 790.	2.8	16
42	Secretome profiling of <i>Propionibacterium freudenreichii</i> reveals highly variable responses even among the closely related strains. Microbial Biotechnology, 2018, 11, 510-526.	4.2	15
43	A Streptococcus uberis transposon mutant screen reveals a negative role for LiaR homologue in biofilm formation. Journal of Applied Microbiology, 2015, 118, 1-10.	3.1	14
44	Two-Dimensional Difference Gel Electrophoresis Analysis of <i>Streptococcus uberis</i> in Response to Mutagenesis-Inducing Ciprofloxacin Challenge. Journal of Proteome Research, 2009, 8, 246-255.	3.7	13
45	Red-Brown Pigmentation of Acidipropionibacterium jensenii Is Tied to Haemolytic Activity and cyl-Like Gene Cluster. Microorganisms, 2019, 7, 512.	3.6	10
46	Acidipropionibacterium virtanenii sp. nov., isolated from malted barley. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3175-3183.	1.7	9
47	Comparative proteome profiling of bovine and human <i>Staphylococcus epidermidis</i> strains for screening specifically expressed virulence and adaptation proteins. Proteomics, 2014, 14, 1890-1894.	2.2	7
48	Characterization and expression of the pepN gene encoding a general aminopeptidase from Lactobacillus helveticus. FEMS Microbiology Letters, 1994, 124, 315-320.	1.8	7
49	Penicillin G increases the synthesis of a suicidal marker (CidC) and virulence (HlgBC) proteins in Staphylococcus aureus biofilm cells. International Journal of Medical Microbiology, 2016, 306, 69-74.	3.6	6
50	Responses of Lactic Acid Bacteria to Heat Stress. , 2011, , 55-66.		6
51	Letter to the editor on â€ [~] Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri, IJFM. 206:56–59'. International Journal of Food Microbiology, 2016, 228, 33.	4.7	5
52	Complete Genome Sequences and Methylome Analyses of Cutibacterium acnes subsp. <i>acnes</i> Strains DSM 16379 and DSM 1897 ^T . Microbiology Resource Announcements, 2020, 9, .	0.6	5
53	Bioaccessibility of vitamin B12 synthesized by Propionibacterium freudenreichii and from products made with fermented wheat bran extract. Current Research in Food Science, 2021, 4, 499-502.	5.8	5
54	Metatranscriptomic assessment of burn wound infection clearance. Clinical Microbiology and Infection, 2021, 27, 144-146.	6.0	4

4

#	Article	IF	CITATIONS
55	Anthranilamides with quinoline and β-carboline scaffolds: design, synthesis, and biological activity. Molecular Diversity, 2022, 26, 2595-2612.	3.9	3