Masaru Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553847/publications.pdf

Version: 2024-02-01

		516710	552781
55	843	16	26
papers	citations	h-index	g-index
EO	58	EO	962
58	30	58	862
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Isolation, Identification, and DFT-Based Conformational Analysis of Sesquikarahanadienone and Its Congeners from Freshwater Dothideomycetes <i>Neohelicascus Aquaticus</i> KT4120. Bulletin of the Chemical Society of Japan, 2022, 95, 833-845.	3.2	4
2	Structural Determination, Total Synthesis, and Biological Activity of Iezoside, a Highly Potent Ca ²⁺ -ATPase Inhibitor from the Marine Cyanobacterium <i>Leptochromothrix valpauliae</i>). Journal of the American Chemical Society, 2022, 144, 11019-11032.	13.7	16
3	Cyclohelminthol CPs: Scope and Limitations of Density Functional Theory-Based Structural Elucidation of Natural Products. Journal of Organic Chemistry, 2021, 86, 1505-1515.	3.2	15
4	Semipinacol rearrangement of a bicyclo [7.2.0] undecane framework into a bicyclo [6.3.0] undecane skeleton: a model study on the biosynthesis of seiridiasteriscane A. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1621-1627.	1.3	1
5	Isolation and structural elucidation of novel fusicoccan dehydroxypericonicin A from <i>Roussoella</i> sp. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1798-1801.	1.3	1
6	Cyclohumulanoid Sesquiterpenes from the Culture Broth of the Basidiomycetous Fungus Daedaleopsis tricolor. Molecules, 2021, 26, 4364.	3.8	4
7	Decaspirones and palmarumycins from Phaeoseptum sp. KT4106: Chirality reinvestigation of palmarumycins CP4a and CP5. Tetrahedron, 2021, 92, 132251.	1.9	3
8	Biochemistryâ€Guided Prediction of the Absolute Configuration of Fungal Reduced Polyketides. Angewandte Chemie - International Edition, 2021, 60, 23403-23411.	13.8	13
9	Biosynthetic Machinery of 6â€Hydroxymellein Derivatives Leading to Cyclohelminthols and Palmaenones. ChemBioChem, 2020, 21, 360-367.	2.6	17
10	DFT calculation–assisted stereoâ€structural assignment of arundifungin. Chirality, 2020, 32, 17-31.	2.6	5
11	DFT-supported structure determination of gymunomitr-3(15)-en-4b,9b-diol. Tetrahedron, 2020, 76, 131301.	1.9	2
12	Oxidative Ring Contraction by a Multifunctional Dioxygenase Generates the Core Cycloocatadiene in the Biosynthesis of Fungal Dimeric Anhydride Zopfiellin. Organic Letters, 2020, 22, 1997-2001.	4.6	15
13	DFT Supported Structural Revision of Seiricardines. Bulletin of the Chemical Society of Japan, 2020, 93, 768-775.	3.2	8
14	DFT supported structural elucidations of seiridiasteriscane A, unique 15-nor-asteriscane and novel pestalotiopsin Congeners from Seiridium sp. KT3957. Tetrahedron, 2020, 76, 131197.	1.9	5
15	Efficient Protocol for Accurately Calculating ¹³ C Chemical Shifts of Conformationally Flexible Natural Products: Scope, Assessment, and Limitations. Journal of Natural Products, 2019, 82, 2299-2306.	3.0	87
16	Cyclopericodiol and new chlorinated melleins isolated from Periconia macrospinosa KT3863. Tetrahedron, 2019, 75, 130470.	1.9	8
17	Identification of neomacrophorins isolated from Trichoderma sp. 1212-03 as proteasome inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 115161.	3.0	10
18	Neomacrophorin and premacrophorin congeners from Trichoderma sp. 1212-03. Tetrahedron, 2019, 75, 2993-3000.	1.9	11

#	Article	IF	CITATIONS
19	Structure of two purple pigments, catechinopyranocyanidins A and B from the seed-coat of the small red bean, Vigna angularis. Scientific Reports, 2019, 9, 1484.	3.3	11
20	Structure-activity relationships of trichothecenes against COLO201 cells and Cochliobolus miyabeanus: The role of 12-epoxide and macrocyclic moieties. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 982-985.	2.2	10
21	Isolation of Peribysins O, P, and Q from <i>Periconia macrospinosa</i> KT3863 and Configurational Reinvestigation of Peribysin E Diacetate from <i>Periconia byssoides</i> OUPS-N133. Journal of Natural Products, 2019, 82, 911-918.	3.0	22
22	Biosynthetic study of conidiation-inducing factor conidiogenone: heterologous production and cyclization mechanism of a key bifunctional diterpene synthase. Bioscience, Biotechnology and Biochemistry, 2019, 83, 192-201.	1.3	15
23	Cyclohelminthols Y1–Y4 Metabolites Possessing Two Spirocyclopropanes in Their Structure. Journal of Organic Chemistry, 2018, 83, 5688-5697.	3.2	12
24	12-Deoxyroridin J and 12-Deoxyepiisororidin E from Calcarisporium arbuscular. Tetrahedron Letters, 2018, 59, 1992-1995.	1.4	4
25	Synthesis of Chiral Nonracemic α-Difluoromethylthio Compounds with Tetrasubstituted Stereogenic Centers via a Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation. Organic Letters, 2018, 20, 7044-7048.	4.6	27
26	Bioorganic studies of mycoparasitism on apple fruits. Japanese Journal of Pesticide Science, 2018, 43, 101-108.	0.0	0
27	Application of the DFT Methods in Structural Elucidation of Natural Products. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 842-850.	0.1	3
28	Cyclohelminthol X, a Hexa-Substituted Spirocyclopropane from <i>Helminthosporium velutinum</i> yone96: Structural Elucidation, Electronic Circular Dichroism Analysis, and Biological Properties. Journal of Organic Chemistry, 2017, 82, 5574-5582.	3.2	28
29	Neomacrophorin X, a [4.4.3]Propellane-Type Meroterpenoid from Trichoderma sp. 1212-03. Journal of Natural Products, 2017, 80, 1484-1492.	3.0	35
30	Stereochemical correction and total structure of roridin J. Tetrahedron, 2017, 73, 5430-5435.	1.9	6
31	Isolation, absolute structures, and biological properties of cyclohelminthols l–IV from Helminthosporium velutinum yone96. Tetrahedron, 2016, 72, 1400-1405.	1.9	12
32	Homojesterones: vinylogous analogues of jesterone from Helminthosporium velutinum TS28. Tetrahedron, 2016, 72, 1031-1035.	1.9	9
33	Homopetasinic acid isolated from Diaporthe sp. strain 1308-05. Tetrahedron Letters, 2016, 57, 1117-1119.	1.4	7
34	Isolation, ECD assisted structural analyses, biosynthetic discussions, and biological activities of epi-cochlioquinones D and its derivatives. Tetrahedron, 2015, 71, 4788-4794.	1.9	12
35	Computation-Assisted Structural Elucidation of Epoxyroussoeone and Epoxyroussoedione Isolated from <i>Roussoella japanensis</i> kT1651. Journal of Natural Products, 2015, 78, 1505-1510.	3.0	16
36	Relative and absolute structure of phomolide C. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1067-1069.	1.3	7

#	Article	IF	Citations
37	Molecular Mechanism of Mycoparasitism on Apple Fruits. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 230-240.	0.1	0
38	Lambertellin system, the mechanism for fungal replacement of Monilinia fructigena with Lambertella corni-maris without competitive inhibition on agar media. Bioorganic and Medicinal Chemistry, 2014, 22, 2489-2495.	3.0	6
39	Neomacrophorin I, II, and III, novel drimenyl cyclohexanes with hydroxylated butanoates from Trichoderma sp. 1212-03. Tetrahedron, 2014, 70, 1458-1463.	1.9	28
40	$7-\hat{l}^2$ - and $10-\hat{l}^2$ -Hydroxylated congeners of CAF-603; elucidation of absolute configuration of CAF-603 family, and their SAR studies in the anti-fungal activity. Tetrahedron, 2013, 69, 9469-9474.	1.9	16
41	Roussoellols A and B, Tetracyclic Fusicoccanes from <i>Roussoella hysterioides</i> Natural Products, 2013, 76, 1047-1051.	3.0	28
42	Four analogues of spiroleptosphol isolated from Leptosphaeria doliolum. Bioorganic and Medicinal Chemistry, 2009, 17, 492-495.	3.0	18
43	RDCâ€Enhanced NMR Spectroscopy in Structure Elucidation of Sucroâ€Neolambertellin. Angewandte Chemie - International Edition, 2008, 47, 2032-2034.	13.8	80
44	Spiroleptosphol isolated from Leptosphaeria doliolum. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4228-4231.	2.2	19
45	Syntheses of Lambertellols and Their Stable Analogues; Investigation of the Real Active Species in the Mycoparasitism by Lambertella Species. Journal of Organic Chemistry, 2008, 73, 5039-5047.	3.2	16
46	Stimulation of the Biosynthesis of the Antibiotics Lambertellols by the Mycoparasitic FungusLambertella corni-marisunder the Acidic Conditions Produced by Its Host Fungusin Vitro. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1230-1235.	1.3	11
47	Insecticidal Properties of <i>Anacardium Occidentale</i> L, 2007, , 312-323.		0
48	An RNA polymerase inhibitor, cyclothiazomycin B1, and its isomer. Bioorganic and Medicinal Chemistry, 2006, 14, 8259-8270.	3.0	41
49	Synthetic Studies on Oligosaccharide Mimics Carrying Sulfur Atoms in the Pyranose Rings. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 766-777.	0.1	2
50	Lambertellol C, a labile and novel biosynthetic congener of lambertellols A and B. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2587-2590.	2.2	20
51	Optimization of isotope-labeling conditions for lambertellin based on isotope patterns observed by mass spectrometry. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2591-2594.	2.2	6
52	Lambertellols A and B, Novel 3,4-Dihydronaphthalen-1(2H)-ones with Spiro-butenolide Produced byLambertellasp.1346. Organic Letters, 2004, 6, 157-160.	4.6	57
53	Biosynthesis of Lambertellols Based on the High Specific Incorporation of the 13C-Labeled Acetates and Their Biological Properties. Journal of the American Chemical Society, 2004, 126, 9214-9220.	13.7	19
54	NOVEL PREPARATION OF (2-AZIDOMETHYL)BENZOIC ACID AND AN APPLICATION AS A PROTECTIVE GROUP. Synthetic Communications, 2002, 32, 3347-3355.	2.1	8

#	Article	IF	CITATIONS
55	One Step and Convenient Preparations of 4-Hydroxyretinal and 4-Oxoretinal. Synthetic Communications, 1999, 29, 3793-3797.	2.1	4