Marcela F Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553774/publications.pdf

Version: 2024-02-01

44 papers

2,056 citations

304368

22

h-index

276539 41 g-index

45 all docs

45 docs citations

45 times ranked

2246 citing authors

#	Article	IF	Citations
1	From denial to hope: Brazil deals with a prolonged COVID-19 epidemic course. Nature Immunology, 2021, 22, 256-257.	7.0	10
2	New Therapeutic Tools to Shape Monocyte Functional Phenotypes in Leishmaniasis. Frontiers in Immunology, 2021, 12, 704429.	2.2	4
3	RANK Ligand Helps Immunity to Leishmania major by Skewing M2-Like Into M1 Macrophages. Frontiers in Immunology, 2020, 11, 886.	2.2	9
4	Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Frontiers in Immunology, 2018, 9, 1569.	2.2	17
5	Antibody Repertoires Identify \hat{l}^2 -Tubulin as a Host Protective Parasite Antigen in Mice Infected With Trypanosoma cruzi. Frontiers in Immunology, 2018, 9, 671.	2.2	10
6	LFA-1 Mediates Cytotoxicity and Tissue Migration of Specific CD8+ T Cells after Heterologous Prime-Boost Vaccination against Trypanosoma cruzi Infection. Frontiers in Immunology, 2017, 8, 1291.	2.2	22
7	All-Trans Retinoic Acid Promotes an M1- to M2-Phenotype Shift and Inhibits Macrophage-Mediated Immunity to Leishmania major. Frontiers in Immunology, 2017, 8, 1560.	2.2	61
8	Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection. Cell Death and Disease, 2016, 7, e2232-e2232.	2.7	20
9	Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity. PLoS ONE, 2015, 10, e0132984.	1.1	38
10	Infection with Leishmania major Induces a Cellular Stress Response in Macrophages. PLoS ONE, 2014, 9, e85715.	1.1	39
11	Innate Immunity to <i>Leishmania</i> Infection: Within Phagocytes. Mediators of Inflammation, 2014, 2014, 1-7.	1.4	27
12	Inhibition of caspase-8 activity promotes protective Th1- and Th2-mediated immunity to Leishmania major infection. Journal of Leukocyte Biology, 2014, 95, 347-355.	1.5	12
13	Pathogen-Induced Proapoptotic Phenotype and High CD95 (Fas) Expression Accompany a Suboptimal CD8+ T-Cell Response: Reversal by Adenoviral Vaccine. PLoS Pathogens, 2012, 8, e1002699.	2.1	57
14	Immunity to Protozoan Parasites. Journal of Parasitology Research, 2012, 2012, 1-3.	0.5	8
15	Myeloid-derived suppressor cells help protective immunity to <i>Leishmania major</i> infection despite suppressed T cell responses. Journal of Leukocyte Biology, 2011, 90, 1191-1197.	1.5	53
16	Apoptotic lymphocytes treated with IgG from <i>Trypanosoma cruzi</i> infection increase TNFâ€Î± secretion and reduce parasite replication in macrophages. European Journal of Immunology, 2010, 40, 417-425.	1.6	8
17	The importance of apoptosis for immune regulation in Chagas disease. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 259-262.	0.8	19
18	Targeting caspases in intracellular protozoan infections. Immunopharmacology and Immunotoxicology, 2009, 31, 159-173.	1.1	15

#	Article	IF	Citations
19	Apoptosis differentially regulates mesenteric and subcutaneous lymph node immune responses to <i>Trypanosoma cruzi</i> . European Journal of Immunology, 2008, 38, 139-146.	1.6	16
20	Inhibition of caspase-8 activity reduces IFN-gamma expression by T cells from Leishmania major infection. Anais Da Academia Brasileira De Ciencias, 2008, 80, 129-136.	0.3	6
21	Neutrophils Activate Macrophages for Intracellular Killing of <i>Leishmania major</i> through Recruitment of TLR4 by Neutrophil Elastase. Journal of Immunology, 2007, 179, 3988-3994.	0.4	128
22	The Fas death pathway controls coordinated expansions of type 1 CD8 and type 2 CD4 T cells inTrypanosoma cruziinfection. Journal of Leukocyte Biology, 2007, 81, 942-951.	1.5	37
23	Cross-talk between apoptosis and cytokines in the regulation of parasitic infection. Cytokine and Growth Factor Reviews, 2007, 18, 97-105.	3.2	18
24	Decoding caspase signaling in host immunity to the protozoan Trypanosoma cruzi. Trends in Immunology, 2007, 28, 366-372.	2.9	17
25	Caspase inhibition reduces lymphocyte apoptosis and improves host immune responses toTrypanosoma cruzi infection. European Journal of Immunology, 2007, 37, 738-746.	1.6	30
26	The importance of aberrant T-cell responses in Chagas disease. Trends in Parasitology, 2005, 21, 237-243.	1.5	52
27	Caspase-8 Activity Prevents Type 2 Cytokine Responses and Is Required for Protective T Cell-Mediated Immunity against <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2005, 174, 6314-6321.	0.4	38
28	Macrophage Interactions with Neutrophils Regulate <i>Leishmania major</i> Infection. Journal of Immunology, 2004, 172, 4454-4462.	0.4	200
29	Viral FLIP Impairs Survival of Activated T Cells and Generation of CD8+ T Cell Memory. Journal of Immunology, 2004, 172, 6313-6323.	0.4	45
30	Ectopic T cell receptor expression causes B cell immunodeficiency in transgenic mice. European Journal of Immunology, 2004, 34, 890-898.	1.6	4
31	Production and Characterization of a T Cell Receptor Transgenic Mouse Recognizing the Immunodominant Epitope of theTorpedo californicaAcetylcholine Receptor. Annals of the New York Academy of Sciences, 2003, 998, 379-383.	1.8	0
32	Costimulation of Host T Lymphocytes by a Trypanosomaltrans-Sialidase: Involvement of CD43 Signaling. Journal of Immunology, 2002, 168, 5192-5198.	0.4	64
33	Apoptosis Underlies Immunopathogenic Mechanisms in Acute Silicosis. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 78-84.	1.4	64
34	T cell receptor transgenic mice recognizing the immunodominant epitope of the Torpedo californica acetylcholine receptor. European Journal of Immunology, 2002, 32, 2055.	1.6	4
35	Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite–host interactions. Trends in Parasitology, 2001, 17, 480-486.	1.5	155
36	FAS Ligand Triggers Pulmonary Silicosis. Journal of Experimental Medicine, 2001, 194, 155-164.	4.2	106

#	Article	lF	CITATIONS
37	The macrophage haunted by cell ghosts: a pathogen grows. Trends in Immunology, 2000, 21, 489-494.	7.5	50
38	Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature, 2000, 403, 199-203.	13.7	426
39	Experimental Chagas disease: phagocytosis of apoptotic lymphocytes deactivates macrophages and fuels parasite growth., 2000, 5, 221-224.		9
40	Increased susceptibility of Fas ligand-deficientgld mice to Trypanosoma cruzi infection due to a Th2-biased host immune response. European Journal of Immunology, 1999, 29, 81-89.	1.6	66
41	Increased susceptibility of Fas ligand-deficient gld mice to Trypanosoma cruzi infection due to a Th2-biased host immune response. , 1999, 29, 81.		2
42	Programmed T-cell death in experimental chagas disease. Parasitology Today, 1995, 11, 391-394.	3.1	40
43	Trypanosoma cruzi: Both Chemically Induced and Triatomine-Derived Metacyclic Trypomastigotes Cause the Same Immunological Disturbances in the Infected Mammalian Host. Experimental Parasitology, 1995, 80, 194-204.	0.5	29
44	Trypanosoma cruzi-induced immunosuppression: blockade of costimulatory T-cell responses in infected hosts due to defective T-cell receptor-CD3 functioning. Infection and Immunity, 1994, 62, 1484-1488.	1.0	21