Federica Bondioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553446/publications.pdf

Version: 2024-02-01

71061 4,966 153 41 citations h-index papers

g-index 155 155 155 5702 docs citations times ranked citing authors all docs

128225

60

#	Article	IF	CITATIONS
1	Characterization of biocompatible scaffolds manufactured by fused filament fabrication of poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate). Royal Society Open Science, 2022, 9, 211485.	1.1	5
2	Epoxy resin/TiO2 nanocomposites prepared by the Reactive Suspension Method: Dynamic-mechanical properties and their prediction by theoretical models. Materials Today Communications, 2022, 31, 103347.	0.9	3
3	Low-Power Laser Powder Bed Fusion Processing of Scalmalloy®. Materials, 2022, 15, 3123.	1.3	11
4	Effect of Aging and Cooling Path on the Super \hat{I}^2 -Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM). Materials, 2022, 15, 4067.	1.3	5
5	Valorization of oat hull fiber from agri-food industrial waste as filler for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Material Cycles and Waste Management, 2021, 23, 402-408.	1.6	12
6	Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering, 2021, 8, 29.	1.6	29
7	Printing and characterization of threeâ€dimensional highâ€loaded nanocomposites structures. Material Design and Processing Communications, 2021, 3, e256.	0.5	1
8	An Automatic on Top Analysis of Single Scan Tracks to Evaluate the Laser Powder Bed Fusion Building Parameters. Materials, 2021, 14, 5171.	1.3	4
9	Development of glass-stalks-unsaturated polyester hybrid composites. Composites Communications, 2020, 22, 100428.	3.3	6
10	3D-Printing Nanocellulose-Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 10292-10302.	3.2	43
11	New biocomposite obtained using poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyhexanoate) (PHBH) and microfibrillated cellulose. Journal of Applied Polymer Science, 2020, 137, 48953.	1.3	21
12	Lightweight clay bricks manufactured by using locally available wine industry waste. Journal of Building Engineering, 2019, 26, 100892.	1.6	27
13	Photocatalytic N-doped TiO2 for self-cleaning of limestones. European Physical Journal Plus, 2019, 134, 1.	1.2	10
14	Developing porous diopside/hydroxyapatite bio-composite scaffolds via a combination of freeze-drying and coating process. Ceramics International, 2019, 45, 9025-9031.	2.3	19
15	Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Materials Science and Engineering C, 2019, 100, 286-296.	3.8	96
16	Verwey transition temperature distribution in magnetic nanocomposites containing polydisperse magnetite nanoparticles. Journal of Materials Science, 2019, 54, 8346-8360.	1.7	6
17	Effects of nano-silica treatment on the flexural post cracking behaviour of polypropylene macro-synthetic fibre reinforced concrete. Mechanics Research Communications, 2018, 88, 12-18.	1.0	41
18	Weathering resistance of PMMA/SiO2/ZrO2 hybrid coatings for sandstone conservation. Polymer Degradation and Stability, 2018, 147, 274-283.	2.7	24

#	Article	IF	CITATIONS
19	Particle anisotropy and crystalline phase transition in one-pot synthesis of nano-zirconia: a causal relationship. CrystEngComm, 2018, 20, 879-888.	1.3	8
20	Structural characterization and functional correlation of Fe3O4 nanocrystals obtained using 2-ethyl-1,3-hexanediol as innovative reactive solvent in non-hydrolytic sol-gel synthesis. Materials Chemistry and Physics, 2018, 207, 337-349.	2.0	16
21	3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 151-160.	0.7	108
22	Rice Husk Ash (RHA) Recycling in Brick Manufacture: Effects on Physical and Microstructural Properties. Waste and Biomass Valorization, 2018, 9, 2529-2539.	1.8	30
23	Advanced resins for stereolithography: In situ generation of silver nanoparticles. AIP Conference Proceedings, 2018, , .	0.3	11
24	Lightweight hybrid organic-inorganic geopolymers obtained using polyurethane waste. Construction and Building Materials, 2018, 185, 285-292.	3.2	48
25	Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles. Polymers, 2018, 10, 212.	2.0	49
26	Study of the wettability behavior of stainless steel surfaces after ultrafast laser texturing. Surface and Coatings Technology, 2018, 352, 370-377.	2,2	56
27	Functionalization of PVC by chitosan addition: Compound stability and tensile properties. Composites Part B: Engineering, 2018, 149, 240-247.	5.9	34
28	Non-hydrolytic sol–gel synthesis and reactive suspension method: an innovative approach to obtain magnetite–epoxy nanocomposite materials. Journal of Sol-Gel Science and Technology, 2017, 81, 69-83.	1.1	10
29	Thermal diffusivity of ZTA composites with different YSZ quantity. Journal of Alloys and Compounds, 2017, 695, 1859-1862.	2.8	17
30	Organic-inorganic nanocomposites prepared by reactive suspension method: investigation on filler/matrix interactions and their effect on the nanoparticles dispersion. Colloid and Polymer Science, 2017, 295, 695-701.	1.0	12
31	Enhanced self-cleaning properties of N-doped TiO 2 coating for Cultural Heritage. Microchemical Journal, 2017, 133, 1-12.	2.3	61
32	Synthesis and characterization of scratch-resistant hybrid coatings based on non-hydrolytic sol-gel ZrO2 nanoparticles. Progress in Organic Coatings, 2017, 103, 60-68.	1.9	31
33	Magnetite-epoxy nanocomposites obtained by the reactive suspension method: Microstructural, thermo-mechanical and magnetic properties. European Polymer Journal, 2017, 94, 354-365.	2.6	15
34	Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography. Composites Communications, 2017, 6, 11-16.	3.3	41
35	Environmental and human health assessment of life cycle of nanoTiO2 functionalized porcelain stoneware tile. Science of the Total Environment, 2017, 577, 113-121.	3.9	21
36	DREAM: Driving up reliability and efficiency of additive manufacturing., 2017,,.		1

#	Article	IF	Citations
37	Structural Characterization of Natural and Processed Zircons with X-Rays and Nuclear Techniques. Advances in Condensed Matter Physics, 2017, 2017, 1-9.	0.4	5
38	Energy Efficiency in the Microwave-Assisted Solid-State Synthesis of Cobalt Aluminate Pigment. Technologies, 2017, 5, 42.	3.0	12
39	Light-Storing Photocatalyst: The Possibility of Activating Titanium Dioxide by Photoluminescence. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 477-482.	0.7	0
40	Bioactive nanocomposites for dental application obtained by reactive suspension method. Nanocomposites, 2016, 2, 37-49.	2.2	4
41	Surface properties of new green building material after TiO2–SiO2 coatings deposition. Ceramics International, 2016, 42, 4866-4874.	2.3	24
42	Photocatalytic self-cleaning TiO2 coatings on carbonatic stones. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	22
43	Basalt fiber ropes and rods: Durability tests for their use in building engineering. Journal of Building Engineering, 2016, 5, 142-150.	1.6	51
44	Nano-TiO2 Coatings for Limestone: Which Sustainability for Cultural Heritage?. Coatings, 2015, 5, 232-245.	1.2	35
45	Epoxy nanocomposites functionalized with in situ generated magnetite nanocrystals: Microstructure, magnetic properties, interaction among magnetic particles. Polymer, 2015, 59, 278-289.	1.8	22
46	Influence of <i>in situ</i> -generated silica nanoparticles on EPDM morphology, thermal, thermomechanical, and mechanical properties. Polymer Composites, 2015, 36, 825-833.	2.3	12
47	Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica. Construction and Building Materials, 2015, 82, 39-44.	3.2	63
48	A novel synthetic strategy for magnetite-type compounds. A combined experimental and DFT-computational study. Physical Chemistry Chemical Physics, 2015, 17, 20522-20529.	1.3	4
49	Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis. Materials Characterization, 2015, 100, 88-97.	1.9	15
50	Durability of SiO ₂ –TiO ₂ Photocatalytic Coatings on Ceramic Tiles. International Journal of Applied Ceramic Technology, 2015, 12, 679-684.	1.1	27
51	Environmental assessment of a bottom-up hydrolytic synthesis of TiO ₂ nanoparticles. Green Chemistry, 2015, 17, 518-531.	4.6	54
52	Epoxy networks reinforced with TiO ₂ generated by nonhydrolytic sol–gel process: A comparison between ⟨i⟩in situ⟨/i⟩ and ⟨i⟩ex situ⟨/i⟩ syntheses to obtain filled polymers. Polymer Engineering and Science, 2015, 55, 1689-1697.	1.5	13
53	Double role of polyethylene glycol in the microwaves-assisted non-hydrolytic synthesis of nanometric TiO2: oxygen source and stabilizing agent. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	15
54	EPDM rubber reinforced with titania generated by nonhydrolytic sol-gel process. Polymer Engineering and Science, 2014, 54, 2544-2552.	1.5	21

#	Article	IF	Citations
55	Microwave-assisted nonaqueous sol–gel synthesis of highly crystalline magnetite nanocrystals. Materials Chemistry and Physics, 2014, 148, 117-124.	2.0	26
56	TiO ₂ nanocoatings for architectural heritage: Self-cleaning treatments on historical stone surfaces. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 228, 2-10.	0.1	4
57	Experimental Analysis of Romanesque Masonries Made by Tile and Brick Fragments Found at the Archaeological Site of S. Maria in Portuno. International Journal of Architectural Heritage, 2014, 8, 161-184.	1.7	9
58	Epoxy resins reinforced with TiO ₂ generated by nonhydrolytic sol–gel process. Journal of Applied Polymer Science, 2014, 131, .	1.3	15
59	Durability of self-cleaning TiO2 coatings on fired clay brick façades: Effects of UV exposure and wet & amp; dry cycles. Building and Environment, 2014, 71, 193-203.	3.0	120
60	Durability of nano-engineered TiO2 self-cleaning treatments on limestone. Construction and Building Materials, 2014, 65, 218-231.	3.2	78
61	Nonaqueous Sol–Gel Synthesis of Magnetic Iron Oxides Nanocrystals. Journal of the American Ceramic Society, 2013, 96, 3169-3175.	1.9	17
62	Color prediction with simplified Kubelka–Munk model in glazes containing Fe2O3–ZrSiO4 coral pink pigments. Dyes and Pigments, 2013, 99, 1029-1035.	2.0	32
63	Selfâ€Cleaning and Antibacteric Ceramic Tile Surface. International Journal of Applied Ceramic Technology, 2013, 10, 949-956.	1.1	60
64	Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Current Applied Physics, 2013, 13, 510-516.	1.1	29
65	Self-cleaning materials on Architectural Heritage: Compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. Journal of Cultural Heritage, 2013, 14, 1-7.	1.5	111
66	Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceramics International, 2013, 39, 5427-5435.	2.3	57
67	Photoâ€Cured Epoxy Networks Functionalized With Fe ₃ O ₄ Generated by Nonâ€hydrolytic Sol–Gel Process. Macromolecular Chemistry and Physics, 2013, 214, 508-516.	1.1	23
68	Crystallisation and microstructure of nepheline–forsterite glass-ceramics. Ceramics International, 2013, 39, 2955-2966.	2.3	32
69	Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles. EXPRESS Polymer Letters, 2013, 7, 673-682.	1.1	22
70	Preparation and characterization of EPDM rubber modified with <i>in situ</i> generated silica. Journal of Applied Polymer Science, 2013, 128, 2525-2532.	1.3	23
71	<scp>CoAl₂O₄</scp> Nano Pigment Obtained by Combustion Synthesis. International Journal of Applied Ceramic Technology, 2012, 9, 968-978.	1.1	33
72	Synthesis and Thermal Stability of Hydroxyapatite-Coated Zirconia Nanocomposite Powders. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 128-134.	0.6	0

#	Article	IF	CITATIONS
73	PMMA–titania nanocomposites: Properties and thermal degradation behaviour. Polymer Degradation and Stability, 2012, 97, 1325-1333.	2.7	65
74	Self-cleaning and de-polluting stone surfaces: TiO 2 nanoparticles for limestone. Construction and Building Materials, 2012, 37, 51-57.	3.2	158
75	Utilization of granodiorite in the production of porcelain stoneware tiles. Ceramics International, 2012, 38, 6267-6272.	2.3	17
76	Poly(methyl methacrylate)–TiO2 nanocomposites obtained by non-hydrolytic sol–gel synthesis: the innovative tert-butyl alcohol route. Journal of Materials Science, 2012, 47, 7003-7012.	1.7	26
77	Tensile characterization of basalt fiber rods and ropes: A first contribution. Construction and Building Materials, 2012, 34, 372-380.	3.2	70
78	Smart surfaces for architectural heritage: Preliminary results about the application of TiO2-based coatings on travertine. Journal of Cultural Heritage, 2012, 13, 204-209.	1.5	87
79	Agricultural waste in the synthesis of coral ceramic pigment. Dyes and Pigments, 2012, 94, 207-211.	2.0	37
80	Photo-cured epoxy networks reinforced with TiO2 in-situ generated by means of non-hydrolytic sol–gel process. Polymer, 2012, 53, 283-290.	1.8	53
81	Mechanical activation of raw materials in the synthesis of Fe2O3–ZrSiO4 inclusion pigment. Journal of the European Ceramic Society, 2012, 32, 643-647.	2.8	35
82	Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations. , 2011, , .		18
83	Granite as flux in stoneware tile manufacturing. Journal of the European Ceramic Society, 2011, 31, 2057-2063.	2.8	22
84	Poly(methyl methacrylate)-TiO2 nanocomposite obtained by non-hydrolytic sol–gel synthesis. Journal of Materials Science, 2011, 46, 6609-6617.	1.7	31
85	TiO2–SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. Journal of Sol-Gel Science and Technology, 2011, 58, 463-469.	1.1	29
86	Epoxy resin modified with <i>in situ</i> generated metal oxides by means of sol–gel process. Journal of Applied Polymer Science, 2011, 122, 1792-1799.	1.3	17
87	Colouring of opaque ceramic glaze with zircon pigments: Formulation with simplified Kubelka–Munk model. Journal of the European Ceramic Society, 2011, 31, 659-664.	2.8	27
88	Characterizing thermal behavior of ceramic glaze containing nano-sized cobalt-aluminate pigment by hot stage microscopy. Thermochimica Acta, 2011, 521, 191-196.	1.2	24
89	Materiales vitrocerámicos del sistema MgO-Al ₂ O ₃ -SiO ₂ a partir de ceniza de cáscara de arroz. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2011, 50, 201-206.	0.9	10
90	Bactericidal effects of reactive thermal plasma synthesized titanium dioxide photocatalysts. Journal of Physics: Conference Series, 2010, 208, 012143.	0.3	1

#	Article	IF	Citations
91	Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2010, 21, 343-351.	1.7	93
92	Functionalization of ceramic tile surface by soluble salts addition: Part I. Journal of the European Ceramic Society, 2010, 30, 11-16.	2.8	10
93	Functionalization of ceramic tile surface by soluble salts addition: Part II. Titanium and silver addition. Journal of the European Ceramic Society, 2010, 30, 1873-1878.	2.8	9
94	Recycling of Screen Glass Into New Traditional Ceramic Materials. International Journal of Applied Ceramic Technology, 2010, 7, 909-917.	1.1	36
95	Characterization of Rice Husk Ash and Its Recycling as Quartz Substitute for the Production of Ceramic Glazes. Journal of the American Ceramic Society, 2010, 93, 121-126.	1.9	39
96	Structure, Sintering, and Crystallization Kinetics of Alkalineâ€Earth Aluminosilicate Glass–Ceramic Sealants for Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2010, 93, 830-837.	1.9	36
97	Improving Epoxy Adhesives with Zirconia Nanoparticles. Composite Interfaces, 2010, 17, 873-892.	1.3	70
98	Sintering and crystallization behavior of CaMgSi2O6–NaFeSi2O6 based glass-ceramics. Journal of Applied Physics, 2009, 106, .	1.1	7
99	Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. Journal of Applied Polymer Science, 2009, 112, 1045-1055.	1.3	35
100	Colour in ceramic glazes: Efficiency of the Kubelka–Munk model in glazes with a black pigment and opacifier. Journal of the European Ceramic Society, 2009, 29, 2685-2690.	2.8	24
101	Functionalization of ceramic tile surface by sol–gel technique. Journal of Colloid and Interface Science, 2009, 334, 195-201.	5.0	64
102	Short range investigation of sub-micron zirconia particles. Journal of Physics: Conference Series, 2009, 167, 012041.	0.3	1
103	Highâ€density polyethylene reinforced with submicron titania particles. Polymer Engineering and Science, 2008, 48, 448-457.	1.5	45
104	Color in ceramic glazes: Analysis of pigment and opacifier grain size distribution effect by spectrophotometer. Journal of the European Ceramic Society, 2008, 28, 1777-1781.	2.8	32
105	DOE analyses on aqueous suspensions of TiO2 nanoparticles. Journal of the European Ceramic Society, 2008, 28, 2665-2671.	2.8	3
106	Synthesis of chromium containing pigments from chromium galvanic sludges. Journal of Hazardous Materials, 2008, 156, 466-471.	6.5	38
107	Effect of synthesis parameters on a hematite–silica red pigment obtained using a coprecipitation route. Dyes and Pigments, 2008, 77, 53-58.	2.0	37
108	Roomâ€Temperature Degradation of <i>t</i> à€Zr(Pr)O ₂ in an Aqueous Suspension Revealed by Perturbed Angular Correlations. Journal of the American Ceramic Society, 2008, 91, 2357-2359.	1.9	0

#	Article	IF	Citations
109	Synthesis of Zirconia Nanoparticles in a Continuousâ€Flow Microwave Reactor. Journal of the American Ceramic Society, 2008, 91, 3746-3748.	1.9	25
110	Effect of rice husk ash (RHA) in the synthesis of (Pr,Zr)SiO4 ceramic pigment. Journal of the European Ceramic Society, 2007, 27, 3483-3488.	2.8	52
111	Influence of firing temperature on the color developed by a (Zr,V)SiO4 pigmented opaque ceramic glaze. Journal of the European Ceramic Society, 2007, 27, 179-184.	2.8	40
112	Microwave and Conventional Hydrothermal Synthesis of Zirconia Doped Powders., 2006,, 627-632.		1
113	Modeling of ceramic particles filled polymer–matrix nanocomposites. Composites Science and Technology, 2006, 66, 1030-1037.	3.8	83
114	Poly(Îμ-caprolactone)-based nanocomposites: Influence of compatibilization on properties of poly(Îμ-caprolactone)–silica nanocomposites. Composites Science and Technology, 2006, 66, 886-894.	3.8	70
115	Synthesis of silica nanoparticles in a continuous-flow microwave reactor. Powder Technology, 2006, 167, 45-48.	2.1	61
116	Color matching algorithms in ceramic tile production. Journal of the European Ceramic Society, 2006, 26, 311-316.	2.8	24
117	Electrical behaviour of materials based on monoclinic celsian derived from cation-exchanged commercial zeolites. Journal of Materials Science, 2006, 41, 4327-4333.	1.7	6
118	From the green color of eskolaite to the red color of ruby: an X-ray absorption spectroscopy study. Physics and Chemistry of Minerals, 2006, 32, 710-720.	0.3	63
119	Synthesis and characterization of nanosized ceria powders by microwave–hydrothermal method. Materials Research Bulletin, 2006, 41, 38-44.	2.7	57
120	Microwave and Conventional Hydrothermal Synthesis of Zirconia Doped Powders., 2006,, 627-632.		1
121	Preparation and characterization of epoxy resins filled with submicron spherical zirconia particles. Polimery, 2006, 51, 794-798.	0.4	21
122	Microwave-Driven Hydrothermal Synthesis of Oxide Nanopowders for Applications in Optoelectronics., 2005,, 163-179.		0
123	Microwave-Hydrothermal Synthesis and Hyperfine Characterization of Praseodymium-Doped Nanometric Zirconia Powders. Journal of the American Ceramic Society, 2005, 88, 633-638.	1.9	42
124	The Anorthite-Diopside System: Structural and Devitrification Study. Part I: Structural Characterization by Molecular Dynamic Simulations. Journal of the American Ceramic Society, 2005, 88, 714-718.	1.9	8
125	New Glass-Ceramic Inclusion Pigment. Journal of the American Ceramic Society, 2005, 88, 1070-1071.	1.9	22
126	Conventional and Microwave-Hydrothermal Synthesis of TiO2 Nanopowders. Journal of the American Ceramic Society, 2005, 88, 2639-2641.	1.9	111

#	Article	IF	CITATIONS
127	The Anorthite-Diopside System: Structural and Devitrification Study. Part II: Crystallinity Analysis by the Rietveld-RIR Method. Journal of the American Ceramic Society, 2005, 88, 3131-3136.	1.9	38
128	Epoxy-silica nanocomposites: Preparation, experimental characterization, and modeling. Journal of Applied Polymer Science, 2005, 97, 2382-2386.	1.3	86
129	Nanoscopic characterization of Pr2Zr2O7 at Zr sites. Physica Status Solidi (B): Basic Research, 2005, 242, 1838-1841.	0.7	2
130	Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route. Journal of Materials Chemistry, 2005, 15, 1061.	6.7	58
131	A new glass–ceramic red pigment. Journal of the European Ceramic Society, 2004, 24, 3593-3601.	2.8	27
132	The structure of ZrO2phases and devitrification processes in a Ca–Zr–Si–O-based glass ceramic: a combined a-XRD and XAS study. Journal of Applied Crystallography, 2004, 37, 890-900.	1.9	21
133	Hyperfine Characterization of Metastable Tetragonal Configurations in Pr-Doped Zirconias. Chemistry of Materials, 2004, 16, 4319-4323.	3.2	9
134	Preparation, characterisation and computational study of poly(Ϊμ-caprolactone) based nanocomposites. Materials Science and Technology, 2004, 20, 1340-1344.	0.8	44
135	Microwave – Hydrothermal Synthesis of Nanocrystalline Pr - Doped Zirconia Powders at Pressures up to 8 MPa. Solid State Phenomena, 2003, 94, 193-196.	0.3	15
136	Microwave Technology Applications in the Synthesis of Ceramic Pigments. Key Engineering Materials, 2002, 206-213, 119-122.	0.4	2
137	ESEM Investigation of the Reaction Mechanism in Pr-Doped Zircon. Key Engineering Materials, 2002, 206-213, 731-734.	0.4	0
138	Role of Praseodymium on Zirconia Phases Stabilization. Chemistry of Materials, 2001, 13, 4550-4554.	3.2	30
139	The application of microwaves in the synthesis of Ce0.9Pr0.1O2 nanostructured powders. Journal of Materials Chemistry, 2001, 11, 2620-2624.	6.7	13
140	Properties/Structure Relationships in Innovative PCL-SiO2 Nanocomposites. Macromolecular Symposia, 2001, 169, 201-210.	0.4	3
141	Enhancing the mechanical properties of porcelain stoneware tiles. Journal of the European Ceramic Society, 2001, 21, 785-793.	2.8	108
142	Microwaveâ∈Hydrothermal Synthesis of Nanocrystalline Zirconia Powders. Journal of the American Ceramic Society, 2001, 84, 2728-2730.	1.9	82
143	Hyperfine Characterization of Pure and Doped Zircons. Journal of Solid State Chemistry, 2000, 150, 14-18.	1.4	16
144	Densification of glass powders belonging to the CaO–ZrO2–SiO2 system by microwave heating. Journal of the European Ceramic Society, 2000, 20, 177-183.	2.8	35

#	Article	IF	CITATIONS
145	Environmental Scanning Electron Microscopy (ESEM) Investigation of the Reaction Mechanism in Praseodymiumâ€Doped Zircon. Journal of the American Ceramic Society, 2000, 83, 1518-1520.	1.9	12
146	Rietveld Structure Refinement of Pr Doped Zirconia. Materials Science Forum, 2000, 321-324, 932-937.	0.3	0
147	Nonconventional Synthesis of Praseodymium-Doped Ceria by Flux Method. Chemistry of Materials, 2000, 12, 324-330.	3.2	75
148	Reaction Mechanism in Alumina/Chromia (Al ₂ 0 ₃) Solid Solutions Obtained by Coprecipitation. Journal of the American Ceramic Society, 2000, 83, 2036-2040.	1.9	89
149	Nanosized CeO2 powders obtained by flux method. Materials Research Bulletin, 1999, 34, 2159-2166.	2.7	58
150	Syntheses of Fe2O3/Silica Red Inorganic Inclusion Pigments for Ceramic Applications. Materials Research Bulletin, 1998, 33, 723-729.	2.7	113
151	Kinetic Study of Conventional Solid-State Synthesis of BaTiO ₃ by <i>in situ</i> HT-XRD. Materials Science Forum, 1998, 278-281, 379-383.	0.3	4
152	Antibacterial and Self-Cleaning Coatings for Silicate Ceramics: A Review. Advances in Science and Technology, 0, , .	0.2	9
153	Study of the Reactivity of Zircon Pigments in Glass Matrix. Ceramic Engineering and Science Proceedings, 0, , 9-14.	0.1	O