James E Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553145/publications.pdf

Version: 2024-02-01

61984 102487 5,320 147 43 66 citations h-index g-index papers 157 157 157 4694 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dihydrogen Bonding:  Structures, Energetics, and Dynamics. Chemical Reviews, 2001, 101, 1963-1980.	47.7	600
2	Pyridine ylide formation by capture of phenylchlorocarbene and tert-butylchlorocarbene. Reaction rates of an alkylchlorocarbene by laser flash photolysis. Journal of the American Chemical Society, 1988, 110, 5595-5596.	13.7	157
3	Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth. Green Chemistry, 2012, 14, 2540.	9.0	143
4	Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. ChemSusChem, 2020, 13, 4214-4237.	6.8	123
5	Design and Synthesis of a Thermally Stable Organic Electride. Journal of the American Chemical Society, 2005, 127, 12416-12422.	13.7	118
6	Crystalline Salts of Na-and K-(Alkalides) that Are Stable at Room Temperature. Journal of the American Chemical Society, 1999, 121, 10666-10667.	13.7	112
7	The carbon 1-carbon 3 bond in [1.1.1]propellane. Journal of the American Chemical Society, 1984, 106, 591-599.	13.7	106
8	Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes. Green Chemistry, 2015, 17, 601-609.	9.0	101
9	Aqueous electrocatalytic hydrogenation of furfural using a sacrificial anode. Electrochimica Acta, 2012, 64, 87-93.	5.2	88
10	Aqueous-phase hydrogenation of lactic acid to propylene glycol. Applied Catalysis A: General, 2001, 219, 89-98.	4.3	83
11	Organosilicon rings: structures and strain energies. Journal of the American Chemical Society, 1990, 112, 3408-3414.	13.7	80
12	A mild approach for bio-oil stabilization and upgrading: electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chemistry, 2014, 16, 844-852.	9.0	79
13	Alkali Metals Plus Silica Gel:Â Powerful Reducing Agents and Convenient Hydrogen Sources. Journal of the American Chemical Society, 2005, 127, 9338-9339.	13.7	77
14	A New Tool To Guide Halofunctionalization Reactions: The Halenium Affinity (<i>HalA</i>) Scale. Journal of the American Chemical Society, 2014, 136, 13355-13362.	13.7	77
15	Nucleophile-Assisted Alkene Activation: Olefins Alone Are Often Incompetent. Journal of the American Chemical Society, 2016, 138, 8114-8119.	13.7	74
16	Formation of 2,3-Pentanedione from Lactic Acid over Supported Phosphate Catalysts. Journal of Catalysis, 1994, 148, 252-260.	6.2	73
17	H2 roaming chemistry and the formation of H3+ from organic molecules in strong laser fields. Nature Communications, 2018, 9, 5186.	12.8	73
18	Lactic Acid Conversion to 2,3-Pentanedione and Acrylic Acid over Silica-Supported Sodium Nitrate: Reaction Optimization and Identification of Sodium Lactate as the Active Catalyst. Journal of Catalysis, 1997, 165, 162-171.	6.2	72

#	Article	IF	Citations
19	Catalysts and Supports for Conversion of Lactic Acid to Acrylic Acid and 2,3-Pentanedione. Industrial & Lamp; Engineering Chemistry Research, 1995, 34, 974-980.	3.7	70
20	Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustainable Energy and Fuels, 2017, 1, 258-266.	4.9	70
21	Electrocatalytic Upgrading of Phenolic Compounds Observed after Lignin Pyrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 8375-8386.	6.7	69
22	Topochemical Control of Covalent Bond Formation by Dihydrogen Bonding. Journal of the American Chemical Society, 1998, 120, 12935-12941.	13.7	65
23	Dissecting the Stereocontrol Elements of a Catalytic Asymmetric Chlorolactonization: Syn Addition Obviates Bridging Chloronium. Journal of the American Chemical Society, 2013, 135, 14524-14527.	13.7	65
24	Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chemistry, 2021, 23, 2868-2899.	9.0	65
25	Reactions of 1,2-Dehydro-o-carborane with Thiophenes. Cycloadditions and an Easy Synthesis of "Benzo-o-carboranesâ€1. Inorganic Chemistry, 1996, 35, 7311-7315.	4.0	64
26	Solventâ€Dependent Enantiodivergence in the Chlorocyclization of Unsaturated Carbamates. Chemistry - A European Journal, 2013, 19, 9015-9021.	3.3	63
27	Supported mesoporous solid base catalysts for condensation of carboxylic acids. Journal of Catalysis, 2011, 278, 189-199.	6.2	62
28	Mechanisms and time-resolved dynamics for trihydrogen cation (H3 +) formation from organic molecules in strong laser fields. Scientific Reports, 2017, 7, 4703.	3.3	62
29	From Molecules to the Crystalline Solid: Secondary Hydrogen-Bonding Interactions of Salt Bridges and Their Role in Magnetic Exchange. Chemistry - A European Journal, 1999, 5, 1474-1480.	3.3	61
30	Effect of biogenic fermentation impurities on lactic acid hydrogenation to propylene glycol. Bioresource Technology, 2008, 99, 5873-5880.	9.6	60
31	Conversion of methanol to gasoline: new mechanism for formation of the first carbon-carbon bond. Journal of the American Chemical Society, 1990, 112, 9085-9092.	13.7	59
32	Barium Azacryptand Sodide, the First Alkalide with an Alkaline Earth Cation, Also Contains a Novel Dimer, (Na2)2 Journal of the American Chemical Society, 2003, 125, 2259-2263.	13.7	57
33	"Inverse Sodium Hydride― A Crystalline Salt that Contains H+and Na Journal of the American Chemical Society, 2002, 124, 5928-5929.	13.7	56
34	Alkali Metals in Silica Gel (M-SG): A New Reagent for Desulfonation of Amines. Organic Letters, 2008, 10, 5441-5444.	4.6	55
35	Reaction and Spectroscopic Studies of Sodium Salt Catalysts for Lactic Acid Conversion. Industrial & Lactic Research, 1997, 36, 3505-3512.	3.7	54
36	FTIR and 31P-NMR Spectroscopic Analyses of Surface Species in Phosphate-Catalyzed Lactic Acid Conversion. Journal of Catalysis, 1996, 164, 207-219.	6.2	53

#	Article	IF	CITATIONS
37	Propylene glycol and ethylene glycol recovery from aqueous solution via reactive distillation. Chemical Engineering Science, 2004, 59, 2881-2890.	3.8	52
38	Reciprocal Hydrogen Bonding–Aromaticity Relationships. Journal of the American Chemical Society, 2014, 136, 13526-13529.	13.7	50
39	Addition of arylchlorocarbenes to .alpha.,.betaunsaturated esters. Absolute rates, substituent effects, and variable reactivities. Journal of the American Chemical Society, 1988, 110, 7143-7152.	13.7	49
40	Measurement of the absolute rate of 1,2-hydrogen migration in benzylchlorocarbene. Journal of the American Chemical Society, 1989, 111, 6874-6875.	13.7	48
41	Stereoretentive Câ^'H Bond Activation in the Aqueous Phase Catalytic Hydrogenation of Amino Acids to Amino Alcohols. Organic Letters, 2003, 5, 527-530.	4.6	48
42	Kinetics of Aqueous-Phase Hydrogenation of Organic Acids and Their Mixtures over Carbon Supported Ruthenium Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 3334-3340.	3.7	48
43	Kinetics of Aqueous-Phase Hydrogenation of Lactic Acid to Propylene Glycol. Industrial & Samp; Engineering Chemistry Research, 2002, 41, 691-696.	3.7	46
44	Mild electrocatalytic hydrogenation of lactic acid to lactaldehyde and propylene glycol. Journal of Catalysis, 2007, 246, 15-28.	6.2	46
45	Magnetic Properties of Metal-Intercalated Layered Vanadyl Phosphates. Inorganic Chemistry, 1996, 35, 800-801.	4.0	44
46	Reaction and Kinetic Studies of Lactic Acid Conversion over Alkali-Metal Salts. Industrial & Engineering Chemistry Research, 1998, 37, 2360-2366.	3.7	43
47	Reactivity Control via Dihydrogen Bonding: Diastereoselection in Borohydride Reductions of α-Hydroxyketones. Journal of the American Chemical Society, 1999, 121, 8655-8656.	13.7	43
48	Laser flash photolysis study of adamantanylidene. Journal of the American Chemical Society, 1991, 113, 2782-2783.	13.7	42
49	Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel. Journal of the American Chemical Society, 2020, 142, 4037-4050.	13.7	40
50	Reactivity and selectivity in intermolecular insertion reactions of chlorophenylcarbene. Tetrahedron Letters, 1988, 29, 5863-5866.	1.4	34
51	Tuning Dihydrogen Bonds: Enhanced Solid-State Reactivity in a Dihydrogen-Bonded System with Exceptionally Short Hâ‹â‹a‹H Distances. Angewandte Chemie - International Edition, 1999, 38, 1661-1663.	13.8	34
52	Birch Reductions at Room Temperature with Alkali Metals in Silica Gel (Na ₂ K-SG(I)). Journal of Organic Chemistry, 2009, 74, 5790-5792.	3.2	34
53	Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon cloth. Sustainable Energy and Fuels, 2020, 4, 1340-1350.	4.9	34
54	Activation parameters for the reaction of phenylchloro carbene with pyridine, tri-butyltin hydride, and triethylsilane; evidence against the need to invoke reversibly formed complexes in the reaction of this carbene with olefins. Tetrahedron Letters, 1989, 30, 1335-1338.	1.4	33

#	Article	IF	CITATIONS
55	An unusual reduction of ethylene occurring during the thermal decomposition of alkalides and electrides Tetrahedron Letters, 1991, 32, 5039-5042.	1.4	33
56	Correlation of structure and internal dynamics for (tris(2,6-dimethoxyphenyl)methyl)tin trihalides: a homologous series of seven-coordinate tin compounds. Organometallics, 1993, 12, 2284-2291.	2.3	33
57	Toward Prediction of Magnetic Properties in Layered Vanadyl Phosphonates: $\hat{a} \in \infty$. Correlation of Magnetic Exchange with the Hammett $\hat{l}f$ Parameter. Journal of the American Chemical Society, 1997, 119, 1313-1316.	13.7	32
58	Topochemical Dihydrogen to Covalent Bonding Transformation in LiBH4·TEA: A Mechanistic Study. Journal of the American Chemical Society, 2000, 122, 5251-5257.	13.7	32
59	Preparation of Diphenyl Phosphide and Substituted Phosphines using Alkali Metal in Silica Gel (Mâ^'SG). Organic Letters, 2009, 11, 1689-1692.	4.6	31
60	Polyatomic Molecules under Intense Femtosecond Laser Irradiation. Journal of Physical Chemistry A, 2014, 118, 11433-11450.	2.5	30
61	AMHB: (Anti)aromaticity-Modulated Hydrogen Bonding. Journal of the American Chemical Society, 2016, 138, 3427-3432.	13.7	29
62	Toward Crystalline Covalent Solids: Crystal-to-Crystal Dihydrogen to Covalent Bonding Transformation in NaBH4â‹ THEC. Angewandte Chemie - International Edition, 2000, 39, 3299-3302.	13.8	28
63	A Kinetic and Mass Transfer Model for Glycerol Hydrogenolysis in a Trickle-Bed Reactor. Organic Process Research and Development, 2010, 14, 1304-1312.	2.7	28
64	Thio-assisted reductive electrolytic cleavage of lignin \hat{l}^2 -O-4 models and authentic lignin. Green Chemistry, 2021, 23, 412-421.	9.0	28
65	Reactions of carbenes with bicyclobutanes and quadricyclane. Tetrahedron, 1985, 41, 1453-1464.	1.9	27
66	Kinetics of the Aqueous-Phase Hydrogenation ofl-Alanine tol-Alaninol. Industrial & Engineering Chemistry Research, 2004, 43, 3297-3303.	3.7	26
67	Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin. ChemSusChem, 2020, 13, 4394-4399.	6.8	26
68	Supramolecular Synthesis through Dihydrogen Bonds: Self-Assembly of Controlled Architectures from NaBH4â‹Poly(2-hydroxyethyl)cyclen Building Blocks. Chemistry - A European Journal, 2002, 8, 302-308.	3.3	23
69	Structural and magnetic properties of vanadyl dichloride solvates: from molecular units to extended hydrogen-bonded solids. Dalton Transactions, 2004, , 224.	3.3	23
70	Absolute and relative facial selectivities in organocatalytic asymmetric chlorocyclization reactions. Chemical Science, 2018, 9, 2898-2908.	7.4	22
71	Biomimetic Reductive Cleavage of Keto Aryl Ether Bonds by Smallâ€Molecule Thiols. ChemSusChem, 2019, 12, 4775-4779.	6.8	22
72	Mechanistic Insights into the Origin of Stereoselectivity in an Asymmetric Chlorolactonization Catalyzed by (DHQD) ₂ PHAL. Journal of the American Chemical Society, 2020, 142, 7179-7189.	13.7	22

#	Article	IF	CITATIONS
73	CH2 + CO2 â†' CH2O + CO, One-Step Oxygen Atom Abstraction or Addition/Fragmentation via α-Lactone?. Journal of Physical Chemistry A, 2001, 105, 7579-7587.	2.5	21
74	Nano-Structures and Interactions of Alkali Metals within Silica Gel. Chemistry of Materials, 2011, 23, 2388-2397.	6.7	21
75	Microsized particles of Aza222 polymer as a regenerable ultrahigh affinity sorbent for the removal of mercury from aqueous solutions. Separation and Purification Technology, 2013, 116, 415-425.	7.9	21
76	Fluorescence excitation spectroscopy of [2.2]paracyclophane in supersonic jets. Chemical Physics Letters, 1992, 191, 149-156.	2.6	20
77	Jacobson and Heintschel Peroxides. Angewandte Chemie International Edition in English, 1994, 33, 775-777.	4.4	20
78	Effects of Ammonium Lactate on 2,3-Pentanedione Formation from Lactic Acid. Industrial & Engineering Chemistry Research, 1999, 38, 3873-3877.	3.7	20
79	Quest for IR-Pumped Reactions in Dihydrogen-Bonded Complexes. Journal of Physical Chemistry A, 2004, 108, 5521-5526.	2.5	20
80	Stereoretentive H/D Exchange via an Electroactivated Heterogeneous Catalyst at sp ³ C–H Sites Bearing Amines or Alcohols. European Journal of Organic Chemistry, 2016, 2016, 4230-4235.	2.4	20
81	Comparison of twists in isosteric propellers: X-ray structures of tris(2,6-dimethoxyphenyl)borane, tris(2,6-dimethoxyphenyl)methyl cation and tris(2,6-dimethoxyphenyl)methyl radical. Acta Crystallographica Section B: Structural Science, 1992, 48, 324-329.	1.8	18
82	Formation and Recovery of Itaconic Acid from Aqueous Solutions of Citraconic Acid and Succinic Acid. Industrial & Engineering Chemistry Research, 2002, 41, 2069-2073.	3.7	18
83	Aqueous-phase adsorption of glycerol and propylene glycol onto activated carbon. Carbon, 2007, 45, 579-586.	10.3	18
84	Vaporâ^'Liquidâ^'Liquid Equilibrium (VLLE) and Vapor Pressure Data for the Systems 2-Methyl-1,3-dioxolane (2MD) + Water and 2,4-Dimethyl-1,3-dioxolane (24DMD) + Water. Journal of Chemical & Chemical	1.9	17
85	Hydrogenation of Amino Acid Mixtures to Amino Alcohols. Industrial & Engineering Chemistry Research, 2008, 47, 7648-7653.	3.7	17
86	Kinetics and spectroscopy of ylids from reaction of p-substituted phenylchlorocarbenes with acetone. Tetrahedron Letters, 1988, 29, 3419-3422.	1.4	16
87	Study of chlorine atom abstraction reactions of phenylchlorocarbene by laser flash photolysis. Journal of the American Chemical Society, 1988, 110, 5597-5597.	13.7	16
88	Selectivity in the Addition Reactions of Organometallic Reagents to Aziridineâ€2â€carboxaldehydes: The Effects of Protecting Groups and Substitution Patterns. Chemistry - A European Journal, 2011, 17, 12326-12339.	3.3	16
89	Chemoenzymatic synthesis of glycopeptides bearing rare N-glycan sequences with or without bisecting GlcNAc. Chemical Science, 2018, 9, 8194-8206.	7.4	16
90	Correlation of13Câ^'1H Coupling Constants with Electronic Structure in Bi- and Polycycloalkanes: A PM3 and HF/6-31G* Analysisâ€. Journal of Physical Chemistry A, 1998, 102, 3738-3745.	2.5	15

#	Article	IF	Citations
91	Process model and economic analysis of itaconic acid production from dimethyl succinate and formaldehyde. Bioresource Technology, 2006, 97, 342-347.	9.6	15
92	Quantitative Analysis of Infrared Spectra of Binary Alcohol + Cyclohexane Solutions with Quantum Chemical Calculations. Journal of Physical Chemistry A, 2020, 124, 3077-3089.	2.5	15
93	Carbene-to-Carbene Oxygen Atom Transfer. Journal of the American Chemical Society, 1996, 118, 8144-8145.	13.7	14
94	Accessing the Rare Diazacyclobutene Motif. Organic Letters, 2018, 20, 8009-8013.	4.6	14
95	Substrate Controlled Regioselective Bromination of Acylated Pyrroles Using Tetrabutylammonium Tribromide (TBABr ₃). Journal of Organic Chemistry, 2018, 83, 9250-9255.	3.2	14
96	Reductive amine deallyl- and debenzylation with alkali metal in Silica Gel (M-SG). Tetrahedron Letters, 2009, 50, 3864-3866.	1.4	12
97	Building Blocks for Molecule-Based Magnets: Radical Anions and Dianions of Substituted 3,6-Dimethylenecyclohexane-1,2,4,5-tetrones as Paramagnetic Bridging Ligands. Inorganic Chemistry, 2009, 48, 9005-9017.	4.0	12
98	Structural and morphological evaluation of Ru–Pd bimetallic nanocrystals. Materials Chemistry and Physics, 2016, 173, 1-6.	4.0	11
99	Highâ€Field NMR Spectroscopy Reveals Aromaticityâ€Modulated Hydrogen Bonding in Heterocycles. Angewandte Chemie - International Edition, 2017, 56, 9842-9846.	13.8	11
100	Chirality of the electron density distribution in methyl groups with local C3 symmetry. Journal of the American Chemical Society, 1985, 107, 2880-2885.	13.7	10
101	Reaction of triethylsilyl radical with sulfides, a laser flash photolysis study. Journal of Physical Organic Chemistry, 1988, 1, 39-46.	1.9	10
102	Role of Cation Complexants in the Synthesis of Alkalides and Electrides. Advances in Inorganic Chemistry, 2006, 59, 205-231.	1.0	10
103	Characterizing Lactic Acid Hydrogenolysis Rates in Laboratory Trickle Bed Reactors. Industrial & Engineering Chemistry Research, 2011, 50, 5440-5447.	3.7	10
104	Reductive N–O cleavage of Weinreb amides by sodium in alumina and silica gels: synthetic and mechanistic studies. Tetrahedron Letters, 2015, 56, 6227-6230.	1.4	10
105	Mild, Electroreductive Lignin Cleavage: Optimizing the Depolymerization of Authentic Lignins. ACS Sustainable Chemistry and Engineering, 2022, 10, 7545-7552.	6.7	10
106	Ferromagnetic coupling by diamagnetic metal cation coordination: magnetism and structure of the alkali-metal salts of nitroxide carboxylates. Chemical Communications, 1996, , 2119.	4.1	9
107	Proton Abstraction Mediates Interactions between the Super Photobase FRO-SB and Surrounding Alcohol Solvent. Journal of Physical Chemistry B, 2019, 123, 8448-8456.	2.6	9
108	Teaching Electrochemistry with Common Objects: Electrocatalytic Hydrogenation of Acetol with U.S. Coins. Journal of Chemical Education, 2020, 97, 172-177.	2.3	9

#	Article	IF	CITATIONS
109	Low temperature carbene-to-carbene homologations. Research on Chemical Intermediates, 1994, 20, 223-247.	2.7	8
110	Formation of citraconic anhydride via condensation of dialkyl succinates and formaldehyde. Applied Catalysis A: General, 2002, 223, 261-273.	4.3	8
111	A mechanistic study of a topochemical dihydrogen to covalent bonding transformation. Thermochimica Acta, 2002, 388, 143-150.	2.7	8
112	Interaction of polyols with ruthenium metal surfaces in aqueous solution. Green Chemistry, 2009, 11 , 1979 .	9.0	8
113	Effects of surface activation on the structural and catalytic properties of ruthenium nanoparticles supported on mesoporous silica. Nanotechnology, 2014, 25, 045701.	2.6	8
114	Electroactivated alkylation of amines with alcohols <i>via</i> both direct and indirect borrowing hydrogen mechanisms. Green Chemistry, 2020, 22, 860-869.	9.0	8
115	Interrupted Ïf-Bonds in Organic Materials with Colligative Magnetic Properties. Molecular Crystals and Liquid Crystals, 1992, 211, 289-303.	0.3	7
116	Reaction of difluorocarbene with small bicyclic molecules. Tetrahedron, 1987, 43, 653-662.	1.9	6
117	Building Blocks for Molecule-Based Magnets:Â A Theoretical Study of Tripletâ^'Singlet Gaps in the Dianion of Rhodizonic Acid 1,4-Dimethide and Its Derivatives. Journal of the American Chemical Society, 2001, 123, 4774-4780.	13.7	6
118	Cycloaddition/Electrocyclic Ring Opening Sequence between Alkynyl Sulfides and Azodicarboxylates To Provide <i>N</i> , <i>N</i> -Dicarbamoyl 2-Iminothioimidates. Journal of Organic Chemistry, 2019, 84, 9734-9743.	3.2	6
119	Femtosecond dynamics and coherence of ionic retro-Diels–Alder reactions. Journal of Chemical Physics, 2021, 155, 044303.	3.0	6
120	Aryl ring twists in tris(2,6-dimethoxyphenyl)-z tripod ethers: X-ray analysis of an isostructural series of triarylpropellers. Structural Chemistry, 1994, 5, 335-340.	2.0	5
121	Ion-Bearing Propellers:Â Alkali Metal Complexes of Tris(2-alkoxyphenyl)amine Ionophores. Inorganic Chemistry, 1996, 35, 6614-6621.	4.0	5
122	Potassium Radical Anion Salts of 2,3-Bis(2-Pyridyl)quinoxaline. Journal of Physical Chemistry B, 1998, 102, 11029-11034.	2.6	5
123	Structural Reinvestigation of Ammonium Hypophosphite:  Was Dihydrogen Bonding Observed Long Ago?. Inorganic Chemistry, 2005, 44, 45-48.	4.0	5
124	Pulsed EPR studies of ion binding in a double-faced paramagnetic ionophore: tris(2,6-di(methoxyethoxy)phenyl)methyl radical. Journal of the American Chemical Society, 1993, 115, 12623-12624.	13.7	4
125	Jacobson―und Heintschelâ€Peroxide. Angewandte Chemie, 1994, 106, 826-828.	2.0	4
126	Effect of Substituents on Dipolar Coupling in Alkali Metal Ketyl Radical Pairs. Molecular Crystals and Liquid Crystals, 1995, 272, 147-151.	0.3	4

#	Article	IF	Citations
127	1-Manxyl:Â A Persistent Tertiary Alkyl Radical that Disproportionates via Îμ-Hydrogen Abstraction. Journal of the American Chemical Society, 1996, 118, 12232-12233.	13.7	4
128	Can Hydridic-to-Protonic Hydrogen Bonds Catalyze Hydride Transfers in Biological Systems?. Journal of Physical Chemistry A, 2010, 114, 13376-13380.	2.5	4
129	Steric effects in light-induced solvent proton abstraction. Physical Chemistry Chemical Physics, 2020, 22, 19613-19622.	2.8	4
130	Isoenergetic two-photon excitation enhances solvent-to-solute excited-state proton transfer. Journal of Chemical Physics, 2020, 153, 224301.	3.0	4
131	Skeletal Ni electrode-catalyzed C-O cleavage of diaryl ethers entails direct elimination via benzyne intermediates. Nature Communications, 2022, 13, 2050.	12.8	4
132	Technoeconomic analysis of corn stover conversion by decentralized pyrolysis and electrocatalysis. Sustainable Energy and Fuels, 2022, 6, 2823-2834.	4.9	4
133	Concerted formation of a double bond between two previously unconnected atoms: methylene + acetylene. The Journal of Physical Chemistry, 1988, 92, 2686-2696.	2.9	3
134	Molecular and Electronic Structure of a Reduced Schiff Base Cryptand:  Characterization by X-ray Crystallography and Optical and EPR/ENDOR Spectroscopy. Journal of Physical Chemistry A, 2000, 104, 3038-3047.	2.5	3
135	Kinetics of Citraconic Anhydride Formation via Condensation of Formaldehyde and Succinates. Organic Process Research and Development, 2002, 6, 611-617.	2.7	3
136	Synthesis and characterization of 4,7-dimethyl-1,4,7,10,15,18-hexaazabicyclo[8.5.5]octane. Crystal structures of the cryptate and of the first small azacage complexes with six-coordinate lithium geometry. Tetrahedron, 2002, 58, 5849-5854.	1.9	3
137	A chiroptical approach for the absolute stereochemical determination of <i>P</i> stereogenic centers. Chemical Science, 2021, 12, 1750-1755.	7.4	3
138	Mechanistic investigations in αâ€hydroxycarbonyls reduction by BH ₄ ^{â€} . Journal of Physical Organic Chemistry, 2012, 25, 1186-1192.	1.9	2
139	Nucleofugality in oxygen and nitrogen derived pseudohalides in Menshutkin reactions: the importance of the intrinsic barrier. Physical Chemistry Chemical Physics, 2014, 16, 24559-24569.	2.8	2
140	Excited-State Dynamics of a Substituted Fluorene Derivative. The Central Role of Hydrogen Bonding Interactions with the Solvent. Journal of Physical Chemistry B, 2021, 125, 12242-12253.	2.6	2
141	Synthesis and characterization of Aza222-based polymers for the removal of mercury from aqueous solutions. Reactive and Functional Polymers, 2014, 74, 90-100.	4.1	1
142	Highâ€Field NMR Spectroscopy Reveals Aromaticityâ€Modulated Hydrogen Bonding in Heterocycles. Angewandte Chemie, 2017, 129, 9974-9978.	2.0	1
143	Ion Complexation Induced High-Spin Associations of Spin-Labeled Crown Ethers: A Reevaluation. Molecular Crystals and Liquid Crystals, 1995, 272, 139-145.	0.3	О
144	Structural Reinvestigation of Ammonium Hypophosphite: Was Dihydrogen Bonding Observed Long Ago?. ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
145	Alkali Metals Plus Silica Gel: Powerful Reducing Agents and Convenient Hydrogen Sources ChemInform, 2005, 36, no.	0.0	0
146	Redox potential tuning in bio-relevant heterocycles via (anti)aromaticity modulated H-bonding (AMHB). Canadian Journal of Chemistry, 2020, 98, 337-346.	1.1	0
147	Intramolecular Relaxation Dynamics Mediated by Solvent–Solute Interactions of Substituted Fluorene Derivatives. Solute Structural Dependence. Journal of Physical Chemistry B, 2021, 125, 12486-12499.	2.6	0