
Jungho Im

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66, 247-259.	4.9	2,410
2	Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment, 2010, 114, 2875-2887.	4.6	490
3	Objectâ€based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing, 2008, 29, 399-423.	1.3	321
4	Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sensing of Environment, 2010, 114, 1141-1154.	4.6	254
5	Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment, 2012, 125, 80-91.	4.6	244
6	Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agricultural and Forest Meteorology, 2016, 216, 157-169.	1.9	229
7	A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sensing of Environment, 2005, 99, 326-340.	4.6	225
8	Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 2015, 164, 298-313.	4.6	198
9	Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agricultural and Forest Meteorology, 2017, 237-238, 105-122.	1.9	158
10	Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GIScience and Remote Sensing, 2014, 51, 158-174.	2.4	141
11	Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157, 155-170.	4.9	126
12	Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environmental Earth Sciences, 2016, 75, 1.	1.3	125
13	Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 2017, 237-238, 257-269.	1.9	118
14	Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches. Remote Sensing, 2016, 8, 215.	1.8	110
15	Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GIScience and Remote Sensing, 2013, 50, 361-384.	2.4	108
16	Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data. Remote Sensing, 2018, 10, 447.	1.8	106
17	Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137, 149-162.	4.9	105
18	Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. International Journal of Applied Earth Observation and Geoinformation, 2016, 49, 75-86.	1.4	94

#	Article	IF	CITATIONS
19	A Review of Remote Sensing of Forest Biomass and Biofuel: Options for Small-Area Applications. GIScience and Remote Sensing, 2011, 48, 141-170.	2.4	88
20	Comparative Assessment of Various Machine Learningâ€Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas. Earth and Space Science, 2020, 7, e2019EA000740.	1.1	88
21	An automatic region-based image segmentation algorithm for remote sensing applications. Environmental Modelling and Software, 2010, 25, 1149-1165.	1.9	87
22	Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sensing of Environment, 2012, 117, 102-113.	4.6	86
23	Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data. Landscape and Urban Planning, 2014, 130, 134-148.	3.4	86
24	Object-Based Land Cover Classification Using High-Posting-Density LiDAR Data. GIScience and Remote Sensing, 2008, 45, 209-228.	2.4	76
25	Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environmental Pollution, 2021, 288, 117711.	3.7	73
26	Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study Over Huntington Wildlife Forest in the Adirondack Park. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3143-3156.	2.3	69
27	Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. Atmospheric Chemistry and Physics, 2019, 19, 1097-1113.	1.9	69
28	Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County, NY. Landscape and Urban Planning, 2012, 107, 293-306.	3.4	68
29	A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110, 34-47.	4.9	65
30	A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sensing of Environment, 2017, 196, 178-192.	4.6	62
31	Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea. Remote Sensing, 2019, 11, 271.	1.8	62
32	Estimating ground-level particulate matter concentrations using satellite-based data: a review. GIScience and Remote Sensing, 2020, 57, 174-189.	2.4	62
33	Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data. Remote Sensing, 2020, 12, 108.	1.8	60
34	Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophysical Research Letters, 2014, 41, 3577-3585.	1.5	57
35	Population estimation based on multi-sensor data fusion. International Journal of Remote Sensing, 2010, 31, 5587-5604.	1.3	56
36	Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection. Remote Sensing, 2016, 8, 698.	1.8	53

#	Article	IF	CITATIONS
37	An artificial immune network approach to multi-sensor land use/land cover classification. Remote Sensing of Environment, 2011, 115, 600-614.	4.6	52
38	Hyperspectral Remote Sensing of Vegetation. Geography Compass, 2008, 2, 1943-1961.	1.5	50
39	Landfast sea ice monitoring using multisensor fusion in the Antarctic. GIScience and Remote Sensing, 2015, 52, 239-256.	2.4	48
40	Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks. Cryosphere, 2020, 14, 1083-1104.	1.5	48
41	A Volumetric Approach to Population Estimation Using Lidar Remote Sensing. Photogrammetric Engineering and Remote Sensing, 2011, 77, 1145-1156.	0.3	47
42	An automated binary change detection model using a calibration approach. Remote Sensing of Environment, 2007, 106, 89-105.	4.6	45
43	Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas. Remote Sensing of Environment, 2008, 112, 3099-3111.	4.6	45
44	Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126, 79-93.	4.9	45
45	Machine Learning Approaches for Detecting Tropical Cyclone Formation Using Satellite Data. Remote Sensing, 2019, 11, 1195.	1.8	45
46	Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data. Atmospheric Measurement Techniques, 2017, 10, 1859-1874.	1.2	44
47	Prediction of Drought on Pentad Scale Using Remote Sensing Data and MJO Index through Random Forest over East Asia. Remote Sensing, 2018, 10, 1811.	1.8	43
48	Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto International, 2009, 24, 293-312.	1.7	41
49	Improvement of spatial interpolation accuracy of daily maximum air temperature in urban areas using a stacking ensemble technique. GIScience and Remote Sensing, 2020, 57, 633-649.	2.4	41
50	Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches. Remote Sensing, 2015, 7, 9184-9204.	1.8	39
51	Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees. Remote Sensing of Environment, 2016, 183, 205-214.	4.6	39
52	Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models. Science of the Total Environment, 2020, 713, 136516.	3.9	39
53	Retrieval of Total Precipitable Water from Himawari-8 AHI Data: A Comparison of Random Forest, Extreme Gradient Boosting, and Deep Neural Network. Remote Sensing, 2019, 11, 1741.	1.8	38
54	Optimizing the binary discriminant function in change detection applications. Remote Sensing of Environment, 2008, 112, 2761-2776.	4.6	37

#	Article	IF	CITATIONS
55	Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing. Remote Sensing, 2012, 4, 327-353.	1.8	37
56	Machine Learning Approaches for Estimating Forest Stand Height Using Plot-Based Observations and Airborne LiDAR Data. Forests, 2018, 9, 268.	0.9	37
57	Remote Sensing Agricultural Crop Type for Sustainable Development in South Africa. Geocarto International, 2006, 21, 5-18.	1.7	36
58	Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event. Environmental Research Letters, 2016, 11, 124003.	2.2	36
59	Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation. Remote Sensing, 2019, 11, 2612.	1.8	35
60	Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days. Remote Sensing, 2020, 12, 1398.	1.8	34
61	Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 253-268.	4.9	33
62	Effects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 81, 82-92.	4.9	27
63	Remote Sensing Change Detection in Urban Environments. , 2007, , 7-31.		26
64	Downscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees. Water (Switzerland), 2017, 9, 332.	1.2	26
65	Convolutional Neural Network-Based Land Cover Classification Using 2-D Spectral Reflectance Curve Graphs With Multitemporal Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4604-4617.	2.3	26
66	A Novel Framework of Detecting Convective Initiation Combining Automated Sampling, Machine Learning, and Repeated Model Tuning from Geostationary Satellite Data. Remote Sensing, 2019, 11, 1454.	1.8	26
67	Improvement of SMAP sea surface salinity in river-dominated oceans using machine learning approaches. CIScience and Remote Sensing, 2021, 58, 138-160.	2.4	26
68	Improving Local Climate Zone Classification Using Incomplete Building Data and Sentinel 2 Images Based on Convolutional Neural Networks. Remote Sensing, 2020, 12, 3552.	1.8	25
69	An improved tree crown delineation method based on live crown ratios from airborne LiDAR data. GIScience and Remote Sensing, 2016, 53, 402-419.	2.4	24
70	Developing a New Hourly Forest Fire Risk Index Based on Catboost in South Korea. Applied Sciences (Switzerland), 2020, 10, 8213.	1.3	24
71	A Fusion Approach for Tree Crown Delineation from Lidar Data. Photogrammetric Engineering and Remote Sensing, 2012, 78, 679-692.	0.3	24
72	Estimating High Spatial Resolution Air Temperature for Regions with Limited in situ Data Using MODIS Products. Remote Sensing, 2014, 6, 7360-7378.	1.8	23

#	Article	IF	CITATIONS
73	Retrieval of Melt Ponds on Arctic Multiyear Sea Ice in Summer from TerraSAR-X Dual-Polarization Data Using Machine Learning Approaches: A Case Study in the Chukchi Sea with Mid-Incidence Angle Data. Remote Sensing, 2016, 8, 57.	1.8	23
74	lcing Detection over East Asia from Geostationary Satellite Data Using Machine Learning Approaches. Remote Sensing, 2018, 10, 631.	1.8	23
75	A new drought monitoring approach: Vector Projection Analysis (VPA). Remote Sensing of Environment, 2021, 252, 112145.	4.6	23
76	The MODIS ice surface temperature product as an indicator of sea ice minimum over the Arctic Ocean. Remote Sensing of Environment, 2014, 152, 99-108.	4.6	22
77	Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data. Remote Sensing, 2017, 9, 821.	1.8	22
78	Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Scientific Reports, 2019, 9, 10087.	1.6	22
79	Recent ENSO influence on East African drought during rainy seasons through the synergistic use of satellite and reanalysis data. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162, 17-26.	4.9	22
80	On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient. Agricultural and Forest Meteorology, 2021, 298-299, 108308.	1.9	21
81	A novel ensemble learning for post-processing of NWP Model's next-day maximum air temperature forecast in summer using deep learning and statistical approaches. Weather and Climate Extremes, 2022, 35, 100410.	1.6	21
82	Forest and Crop Leaf Area Index Estimation Using Remote Sensing: Research Trends and Future Directions. Remote Sensing, 2020, 12, 2934.	1.8	19
83	A Remote Sensing and GIS-assisted Spatial Decision Support System for Hazardous Waste Site Monitoring. Photogrammetric Engineering and Remote Sensing, 2009, 75, 169-177.	0.3	18
84	Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning. Remote Sensing of Environment, 2022, 273, 112980.	4.6	18
85	Detection of Tropical Overshooting Cloud Tops Using Himawari-8 Imagery. Remote Sensing, 2017, 9, 685.	1.8	17
86	Effects of seasonal variations on sediment-plume streaks from dredging operations. Marine Pollution Bulletin, 2018, 129, 26-34.	2.3	17
87	Deep learning-based monitoring of overshooting cloud tops from geostationary satellite data. GIScience and Remote Sensing, 2018, 55, 763-792.	2.4	16
88	Short-Term Forecasting of Satellite-Based Drought Indices Using Their Temporal Patterns and Numerical Model Output. Remote Sensing, 2020, 12, 3499.	1.8	16
89	Variations in ice velocities of Pine Island Glacier Ice Shelf evaluated using multispectral image matching of Landsat time series data. Remote Sensing of Environment, 2016, 186, 358-371.	4.6	15
90	Intercomparison of Terrestrial Carbon Fluxes and Carbon Use Efficiency Simulated by CMIP5 Earth System Models. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 145-163.	1.3	15

#	Article	IF	CITATIONS
91	A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles. Remote Sensing, 2015, 7, 16045-16061.	1.8	14
92	Chlorophyll- <i>a</i> concentration estimation using three difference bio-optical algorithms, including a correction for the low-concentration range: the case of the Yiam reservoir, Korea. Remote Sensing Letters, 2016, 7, 407-416.	0.6	14
93	Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches. PLoS ONE, 2019, 14, e0223362.	1.1	14
94	Object-based landfast sea ice detection over West Antarctica using time series ALOS PALSAR data. Remote Sensing of Environment, 2020, 242, 111782.	4.6	14
95	Earth observations and geographic information science for sustainable development goals. GIScience and Remote Sensing, 2020, 57, 591-592.	2.4	14
96	Characterization of Forest Crops with a Range of Nutrient and Water Treatments Using AISA Hyperspectral Imagery. GIScience and Remote Sensing, 2012, 49, 463-491.	2.4	13
97	Different Spectral Domain Transformation for Land Cover Classification Using Convolutional Neural Networks with Multi-Temporal Satellite Imagery. Remote Sensing, 2020, 12, 1097.	1.8	13
98	Pre-trained feature aggregated deep learning-based monitoring of overshooting tops using multi-spectral channels of GeoKompsat-2A advanced meteorological imagery. GIScience and Remote Sensing, 2021, 58, 1052-1071.	2.4	13
99	All-Sky 1 km MODIS Land Surface Temperature Reconstruction Considering Cloud Effects Based on Machine Learning. Remote Sensing, 2022, 14, 1815.	1.8	13
100	Indicators for separating undesirable and well-delineated tree crowns in high spatial resolution images. International Journal of Remote Sensing, 2012, 33, 5451-5472.	1.3	12
101	Remote Sensing-based House Value Estimation Using an Optimized Regional Regression Model. Photogrammetric Engineering and Remote Sensing, 2013, 79, 809-820.	0.3	12
102	Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes. Geocarto International, 2012, 27, 373-393.	1.7	11
103	Impact of seasonal vertical stratification on the dispersion patterns of dredging plumes off the south coast of Korea. Marine Geology, 2018, 395, 14-21.	0.9	11
104	Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data. Cryosphere, 2018, 12, 1665-1679.	1.5	11
105	Aerosol data assimilation and forecast using Geostationary Ocean Color Imager aerosol optical depth and in-situ observations during the KORUS-AQ observing period. GIScience and Remote Sensing, 2021, 58, 1175-1194.	2.4	11
106	High-Resolution Seamless Daily Sea Surface Temperature Based on Satellite Data Fusion and Machine Learning over Kuroshio Extension. Remote Sensing, 2022, 14, 575.	1.8	11
107	Image Classification. , 0, , 269-281.		10
108	Air Quality Forecasts Improved by Combining Data Assimilation and Machine Learning With Satellite AOD. Geophysical Research Letters, 2022, 49, .	1.5	10

#	Article	IF	CITATIONS
109	AMSR2 soil moisture downscaling using multisensor products through machine learning approach. , 2015, , .		9
110	Synergistic Use of Hyperspectral UV-Visible OMI and Broadband Meteorological Imager MODIS Data for a Merged Aerosol Product. Remote Sensing, 2020, 12, 3987.	1.8	9
111	A Genetic Algorithm Approach to Moving Threshold Optimization for Binary Change Detection. Photogrammetric Engineering and Remote Sensing, 2011, 77, 167-180.	0.3	8
112	Developing data-driven models for quantifying <i>Cochlodinium polykrikoides</i> using the Geostationary Ocean Color Imager (GOCI). International Journal of Remote Sensing, 2018, 39, 68-83.	1.3	8
113	Airborne Lidar Sampling Strategies to Enhance Forest Aboveground Biomass Estimation from Landsat Imagery. Remote Sensing, 2019, 11, 1906.	1.8	8
114	Advances in Remote Sensing-Based Disaster Monitoring and Assessment. Remote Sensing, 2019, 11, 2181.	1.8	8
115	Improvement of satellite-based estimation of gross primary production through optimization of meteorological parameters and high resolution land cover information at regional scale over East Asia. Agricultural and Forest Meteorology, 2019, 271, 180-192.	1.9	8
116	Characteristics of Search Spaces for Identifying Optimum Thresholds in Change Detection Studies. GIScience and Remote Sensing, 2009, 46, 249-272.	2.4	7
117	Enhancing Binary Change Detection Performance Using A Moving Threshold Window (MTW) Approach. Photogrammetric Engineering and Remote Sensing, 2009, 75, 951-961.	0.3	7
118	Spatial and diurnal variations of storm heights in the East Asia summer monsoon: storm height regimes and large-scale diurnal modulation. Climate Dynamics, 2016, 46, 745-763.	1.7	7
119	Intercomparison of Downscaling Techniques for Satellite Soil Moisture Products. Advances in Meteorology, 2018, 2018, 1-16.	0.6	7
120	Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches. Korean Journal of Remote Sensing, 2016, 32, 221-234.	0.4	7
121	Improved soil moisture estimation: Synergistic use of satellite observations and land surface models over CONUS based on machine learning. Journal of Hydrology, 2022, 609, 127749.	2.3	7
122	Downscaling MODIS nighttime land surface temperatures in urban areas using ASTER thermal data through local linear forest. International Journal of Applied Earth Observation and Geoinformation, 2022, 110, 102827.	0.9	7
123	A Novel Tropical Cyclone Size Estimation Model Based on a Convolutional Neural Network Using Geostationary Satellite Imagery. Remote Sensing, 2022, 14, 426.	1.8	6
124	Estimation of Spatially Continuous Near-Surface Relative Humidity Over Japan and South Korea. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8614-8626.	2.3	5
125	Geostationary satellite-derived ground-level particulate matter concentrations using real-time machine learning in Northeast Asia. Environmental Pollution, 2022, 306, 119425.	3.7	5
126	Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing - A Comparison between k-Nearest Neighbor and Regression Tree Analysis Korean Journal of Remote Sensing, 2014, 30, 651-664.	0.4	3

#	Article	IF	CITATIONS
127	Development of <scp>model output statistics</scp> based on <scp>the least absolute shrinkage and selection operator</scp> regression for forecasting nextâ€day maximum temperature in South Korea. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1929-1944.	1.0	3
128	Development of a remote sensing change detection system based on neighborhood correlation image analysis and intelligent knowledge-based systems. , 0, , .		2
129	CO2 concentration and its spatiotemporal variation in the troposphere using multi-sensor satellite data, carbon tracker, and aircraft observations. CIScience and Remote Sensing, 2017, 54, 592-613.	2.4	2
130	Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas. Korean Journal of Remote Sensing, 2014, 30, 525-536.	0.4	1