Menny Shalom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantumâ€Dotâ€&ensitized Solar Cells. ChemPhysChem, 2010, 11, 2290-2304.	2.1	825
2	Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 2013, 135, 7118-7121.	13.7	781
3	The Synthesis of Nanostructured Ni ₅ P ₄ Films and their Use as a Nonâ€Noble Bifunctional Electrocatalyst for Full Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 12361-12365.	13.8	751
4	Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2015, 3, 8171-8177.	10.3	408
5	A General Salt-Templating Method To Fabricate Vertically Aligned Graphitic Carbon Nanosheets and Their Metal Carbide Hybrids for Superior Lithium Ion Batteries and Water Splitting. Journal of the American Chemical Society, 2015, 137, 5480-5485.	13.7	310
6	PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2011, 115, 6162-6166.	3.1	279
7	Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 5509-5516.	8.0	254
8	Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 6834-6839.	13.7	252
9	The Synthesis of Nanostructured Ni ₅ P ₄ Films and their Use as a Nonâ€Noble Bifunctional Electrocatalyst for Full Water Splitting. Angewandte Chemie, 2015, 127, 12538-12542.	2.0	240
10	Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO ₂ Coating. Journal of Physical Chemistry C, 2009, 113, 3895-3898.	3.1	239
11	Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition. ACS Nano, 2010, 4, 5962-5968.	14.6	238
12	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie - International Edition, 2016, 55, 3672-3676.	13.8	233
13	Liquid-Based Growth of Polymeric Carbon Nitride Layers and Their Use in a Mesostructured Polymer Solar Cell with <i>V</i> _{oc} Exceeding 1 V. Journal of the American Chemical Society, 2014, 136, 13486-13489.	13.7	227
14	Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2019, 58, 6138-6151.	13.8	205
15	<i>In Situ</i> Formation of Heterojunctions in Modified Graphitic Carbon Nitride: Synthesis and Noble Metal Free Photocatalysis. Chemistry of Materials, 2014, 26, 5812-5818.	6.7	192
16	Built-in Quantum Dot Antennas in Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 1293-1298.	14.6	191
17	Controlled Carbon Nitride Growth on Surfaces for Hydrogen Evolution Electrodes. Angewandte Chemie - International Edition, 2014, 53, 3654-3658.	13.8	187
18	Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution. ChemSusChem, 2015, 8, 1350-1358.	6.8	178

#	Article	IF	CITATIONS
19	Energy Level Alignment in CdS Quantum Dot Sensitized Solar Cells Using Molecular Dipoles. Journal of the American Chemical Society, 2009, 131, 9876-9877.	13.7	177
20	Highly Porous Materials as Tunable Electrocatalysts for the Hydrogen and Oxygen Evolution Reaction. Advanced Functional Materials, 2015, 25, 393-399.	14.9	169
21	Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors. Langmuir, 2014, 30, 447-451.	3.5	167
22	A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie - International Edition, 2018, 57, 1186-1192.	13.8	161
23	Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116.	10.3	142
24	Quantum Dotâ^'Dye Bilayer-Sensitized Solar Cells: Breaking the Limits Imposed by the Low Absorbance of Dye Monolayers. Journal of Physical Chemistry Letters, 2010, 1, 1134-1138.	4.6	135
25	Continuous Heterogeneous Photocatalysis in Serial Microâ€Batch Reactors. Angewandte Chemie - International Edition, 2018, 57, 9976-9979.	13.8	134
26	Quantum Rod-Sensitized Solar Cell: Nanocrystal Shape Effect on the Photovoltaic Properties. Nano Letters, 2012, 12, 2095-2100.	9.1	121
27	Efficiency Enhancement of Carbon Nitride Photoelectrochemical Cells via Tailored Monomers Design. Advanced Energy Materials, 2016, 6, 1600263.	19.5	116
28	Colorâ€Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 913-917.	7.3	115
29	Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 2018, 10, 5573-5586.	3.7	105
30	Upconversion-Agent Induced Improvement of g-C ₃ N ₄ Photocatalyst under Visible Light. ACS Applied Materials & Interfaces, 2014, 6, 16481-16486.	8.0	104
31	Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 2017, 205, 1-10.	20.2	102
32	"Caffeine Doping―of Carbon/Nitrogenâ€Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes. ChemCatChem, 2015, 7, 2826-2830.	3.7	96
33	The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 3841.	2.8	95
34	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie - International Edition, 2017, 56, 8426-8430.	13.8	90
35	Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry. Advanced Functional Materials, 2015, 25, 6265-6271.	14.9	89
36	Salt-Assisted Synthesis of 3D Porous g-C ₃ N ₄ as a Bifunctional Photo- and Electrocatalyst. ACS Applied Materials & Interfaces, 2019, 11, 27226-27232.	8.0	89

#	Article	IF	CITATIONS
37	Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nature Communications, 2020, 11, 4701.	12.8	87
38	A Water‧plitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential. Angewandte Chemie - International Edition, 2018, 57, 15807-15811.	13.8	85
39	Carbon Nitride/Reduced Graphene Oxide Film with Enhanced Electron Diffusion Length: An Efficient Photoâ€Electrochemical Cell for Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1800566.	19.5	83
40	Design Rules for High-Efficiency Quantum-Dot-Sensitized Solar Cells: A Multilayer Approach. Journal of Physical Chemistry Letters, 2012, 3, 2436-2441.	4.6	77
41	Experimental and Theoretical Assessment of Niâ€Based Binary Compounds for the Hydrogen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1601735.	19.5	77
42	Electrophoretic Deposition of Carbon Nitride Layers for Photoelectrochemical Applications. ACS Applied Materials & Interfaces, 2016, 8, 13058-13063.	8.0	74
43	Spongeâ€like Nickel and Nickel Nitride Structures for Catalytic Applications. Advanced Materials, 2014, 26, 1272-1276.	21.0	71
44	Self-Standing Carbon Nitride-Based Hydrogels with High Photocatalytic Activity. ACS Applied Materials & Interfaces, 2017, 9, 2029-2034.	8.0	69
45	Photochemical and electrocatalytic water oxidation activity of cobalt carbodiimide. Journal of Materials Chemistry A, 2015, 3, 5072-5082.	10.3	68
46	SrTiO ₃ Recombination-Inhibiting Barrier Layer for Type II Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 10015-10018.	3.1	67
47	One-Pot Synthesis of Nickel-Modified Carbon Nitride Layers Toward Efficient Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2017, 9, 32667-32677.	8.0	66
48	Unprecedented Centimeter‣ong Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 2018, 14, e1800633.	10.0	64
49	Covalent Organic Framework Films through Electrophoretic Deposition—Creating Efficient Morphologies for Catalysis. Chemistry of Materials, 2019, 31, 10008-10016.	6.7	63
50	Highly Efficient Polymeric Carbon Nitride Photoanode with Excellent Electron Diffusion Length and Hole Extraction Properties. Nano Letters, 2020, 20, 4618-4624.	9.1	63
51	Design of a Unique Energy-Band Structure and Morphology in a Carbon Nitride Photocatalyst for Improved Charge Separation and Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 519-530.	6.7	60
52	Synthesis of Organized Layered Carbon by Selfâ€Templating of Dithiooxamide. Advanced Materials, 2016, 28, 6727-6733.	21.0	59
53	Reinforced Hydrogels via Carbon Nitride Initiated Polymerization. Macromolecules, 2017, 50, 1862-1869.	4.8	58
54	A Heterogeneous Carbon Nitride–Nickel Photocatalyst for Efficient Lowâ€Temperature CO ₂ Methanation. Advanced Energy Materials, 2019, 9, 1902738.	19.5	58

#	Article	IF	CITATIONS
55	SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis. Catalysis Today, 2014, 225, 185-190.	4.4	56
56	Unraveling the Mechanisms of Electrocatalytic Oxygenation and Dehydrogenation of Organic Molecules to Valueâ€Added Chemicals Over a Ni–Fe Oxide Catalyst. Advanced Energy Materials, 2021, 11, 2101858.	19.5	51
57	Halogen-hydrogen bonds: A general synthetic approach for highly photoactive carbon nitride with tunable properties. Applied Catalysis B: Environmental, 2018, 237, 681-688.	20.2	44
58	Rich surface hydroxyl design for nanostructured TiO2 and its hole-trapping effect. Chemical Engineering Journal, 2020, 400, 125909.	12.7	43
59	The Complex Role of Carbon Nitride as a Sensitizer in Photoelectrochemical Cells. Advanced Optical Materials, 2015, 3, 1052-1058.	7.3	41
60	Quantum dot based anode and cathode for high voltage tandem photo -electrochemical solar cell. Energy and Environmental Science, 2011, 4, 1874.	30.8	40
61	Illumination Intensity-Dependent Electronic Properties in Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1998-2003.	4.6	40
62	Robust Carbon Nitride-Based Thermoset Coatings for Surface Modification and Photochemistry. ACS Applied Materials & amp; Interfaces, 2019, 11, 9462-9469.	8.0	40
63	Visible light-driven graphitic carbon nitride (g-C3N4) photocatalyzed ketalization reaction in methanol with methylviologen as efficient electron mediator. Applied Catalysis B: Environmental, 2017, 207, 311-315.	20.2	39
64	Covalent Functionalization of Carbon Nitride Frameworks through Crossâ€Coupling Reactions. Chemistry - A European Journal, 2018, 24, 14921-14927.	3.3	39
65	Controllable Synthesis of Carbon Nitride Films with Type-II Heterojunction for Efficient Photoelectrochemical Cells. Chemistry of Materials, 2020, 32, 5845-5853.	6.7	39
66	Solutionâ€Processable Carbon Nitride Polymers for Photoelectrochemical Applications. Small Methods, 2019, 3, 1900401.	8.6	38
67	Conjugated Carbon Nitride as an Emerging Luminescent Material: Quantum Dots, Thin Films and Their Applications in Imaging, Sensing, Optoelectronic Devices and Photoelectrochemistry. ChemPhotoChem, 2019, 3, 170-179.	3.0	38
68	Bottomâ€Up Synthesis of Advanced Carbonaceous Anode Materials Containing Sulfur for Naâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2000592.	14.9	37
69	Unpredicted electron injection in CdS/CdSe quantum dot sensitized ZrO2 solar cells. Physical Chemistry Chemical Physics, 2011, 13, 19302.	2.8	36
70	C=C π Bond Modified Graphitic Carbon Nitride Films for Enhanced Photoelectrochemical Cell Performance. Chemistry - an Asian Journal, 2017, 12, 1005-1012.	3.3	35
71	Moving Graphitic Carbon Nitride from Electrocatalysis and Photocatalysis to a Potential Electrode Material for Photoelectric Devices. Chemistry - an Asian Journal, 2016, 11, 2499-2512.	3.3	34
72	Ultralong Nanostructured Carbon Nitride Wires and Self-Standing C-Rich Filters from Supramolecular Microspheres. ACS Applied Materials & Interfaces, 2018, 10, 39688-39694.	8.0	34

#	Article	IF	CITATIONS
73	Low ost Porous Ruthenium Layer Deposited on Nickel Foam as a Highly Active Universalâ€pH Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 2780-2787.	6.8	34
74	Internal Photoreference Electrode: A Powerful Characterization Method for Photoelectrochemical Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1032-1037.	4.6	32
75	Strong Efficiency Enhancement of Dye-Sensitized Solar Cells Using a La-Modified TiCl ₄ Treatment of Mesoporous TiO ₂ Electrodes. Journal of Physical Chemistry C, 2011, 115, 21481-21486.	3.1	32
76	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie, 2016, 128, 3736-3740.	2.0	31
77	Graphene oxide in carbon nitride: from easily processed precursors to a composite material with enhanced photoelectrochemical activity and long-term stability. Journal of Materials Chemistry A, 2019, 7, 11718-11723.	10.3	30
78	2D/2D Graphitic Carbon Nitride/Antimonene Heterostructure: Structural Characterization and Application in Photocatalysis. Advanced Sustainable Systems, 2019, 3, 1800138.	5.3	30
79	Carbon Nitrideâ€Based Photoanode with Enhanced Photostability and Water Oxidation Kinetics. Advanced Functional Materials, 2021, 31, 2101724.	14.9	29
80	Oneâ€Pot Synthesis of CoS ₂ Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. ChemSusChem, 2022, 15, .	6.8	29
81	Tough high modulus hydrogels derived from carbon-nitride <i>via</i> an ethylene glycol co-solvent route. Soft Matter, 2018, 14, 2655-2664.	2.7	28
82	Synthesis of Carbon–Nitrogen–Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fireâ€Retardant Material. Angewandte Chemie - International Edition, 2018, 57, 9764-9769.	13.8	28
83	Characterization and control of the electronic properties of a NiO based dye sensitized photocathode. Physical Chemistry Chemical Physics, 2013, 15, 6339.	2.8	26
84	Conformal Carbon Nitride Coating as an Efficient Hole Extraction Layer for ZnO Nanowiresâ€Based Photoelectrochemical Cells. Advanced Materials Interfaces, 2017, 4, 1700924.	3.7	26
85	A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie, 2018, 130, 1200-1206.	2.0	26
86	Disclosing the High Activity of Ceramic Metallics in the Oxygen Evolution Reaction: Nickel Materials as a Case Study. ChemSusChem, 2016, 9, 2928-2932.	6.8	25
87	Toward Efficient Carbon Nitride Photoelectrochemical Cells: Understanding Charge Transfer Processes. Advanced Materials Interfaces, 2017, 4, 1600265.	3.7	24
88	Surface polycondensation as an effective tool to activate organic crystals: from "boxed― semiconductors for water oxidation to 1d carbon nanotubes. Journal of Materials Chemistry A, 2017, 5, 18502-18508.	10.3	24
89	Freestanding Hierarchical Carbon Nitride/Carbon-Paper Electrode as a Photoelectrocatalyst for Water Splitting and Dye Degradation. ACS Applied Materials & Interfaces, 2019, 11, 29139-29146.	8.0	24
90	Kontinuierliche heterogene Photokatalyse in seriellen Mikroâ€Batchâ€Reaktoren. Angewandte Chemie, 2018, 130, 10127-10131.	2.0	23

#	Article	IF	CITATIONS
91	Photoactive carbon nitride from melamine hydrochloride supramolecular assembly. Materials Science in Semiconductor Processing, 2018, 73, 78-82.	4.0	23
92	Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 2006-2014.	4.9	23
93	Photoactive Graphitic Carbon Nitride-Based Gel Beads As Recyclable Photocatalysts. ACS Applied Polymer Materials, 2020, 2, 3346-3354.	4.4	23
94	Design of melem-based supramolecular assemblies for the synthesis of polymeric carbon nitrides with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2021, 9, 17855-17864.	10.3	22
95	A Waterâ€Splitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential. Angewandte Chemie, 2018, 130, 16033-16037.	2.0	21
96	Tailoring carbon nitride properties and photoactivity by interfacial engineering of hydrogen-bonded frameworks. Nanoscale, 2019, 11, 5564-5570.	5.6	21
97	Ultrathin mesoporous graphitic carbon nitride nanosheets with functional cyano group decoration and nitrogen-vacancy defects for an efficient selective CO ₂ photoreduction. Nanoscale, 2021, 13, 12634-12641.	5.6	21
98	Carbon and Nitrogen Based Nanosheets as Fluorescent Probes with Tunable Emission. Small, 2018, 14, e1800516.	10.0	20
99	Alcohol oxidation with high efficiency and selectivity by nickel phosphide phases. Journal of Materials Chemistry A, 2022, 10, 8238-8244.	10.3	20
100	Layered Boron–Nitrogen–Carbon–Oxygen Materials with Tunable Composition as Lithiumâ€ion Battery Anodes. ChemSusChem, 2018, 11, 2912-2920.	6.8	19
101	Kohlenstoffnitridmaterialien für photochemische Zellen zur Wasserspaltung. Angewandte Chemie, 2019, 131, 6198-6211.	2.0	19
102	Supramolecular organization of melem for the synthesis of photoactive porous carbon nitride rods. Nanoscale, 2021, 13, 19511-19517.	5.6	18
103	New Organic Semiconducting Scaffolds by Supramolecular Preorganization: Dye Intercalation and Dye Oxidation and Reduction. Small, 2016, 12, 6090-6097.	10.0	17
104	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie, 2017, 129, 8546-8550.	2.0	16
105	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14202-14208.	3.3	16
106	Controlling dye aggregation, injection energetics and catalytic recombination in organic sensitizer based dye cells using a single electrolyte additive. Energy and Environmental Science, 2013, 6, 3046.	30.8	15
107	Electronic Structure Engineering of Carbon Nitride Materials by Using Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2020, 26, 6622-6628.	3.3	15
108	Electrophoretic deposition of supramolecular complexes for the formation of carbon nitride films. Sustainable Energy and Fuels, 2020, 4, 3879-3883.	4.9	14

#	Article	IF	CITATIONS
109	Reactive Hypersaline Route: One-Pot Synthesis of Porous Photoactive Nanocomposites. Langmuir, 2017, 33, 5213-5222.	3.5	13
110	Condensation of Supramolecular Assemblies at Low Temperatures as a Tool for the Preparation of Photoactive C 3 N 3 O Materials. ChemCatChem, 2019, 11, 6295-6300.	3.7	13
111	Coordinationâ€Directed Growth of Transitionâ€Metal–Crystallineâ€Carbon Composites with Controllable Metal Composition. Angewandte Chemie - International Edition, 2019, 58, 14964-14968.	13.8	12
112	Light on peroxide. Nature Catalysis, 2021, 4, 350-351.	34.4	12
113	Synergistic Doping and Surface Decoration of Carbon Nitride Macrostructures by Single Crystal Design. ACS Applied Energy Materials, 2021, 4, 1868-1875.	5.1	12
114	Electrophoretic deposition of antimonene for photoelectrochemical applications. Applied Materials Today, 2020, 20, 100714.	4.3	11
115	Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers. Molecules, 2021, 26, 1646.	3.8	11
116	Carbon nanoarchitectures by design: preâ€organizing squaric acid with urea. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 866-873.	1.5	9
117	Bismuthiolâ€Mediated Synthesis of Ordered Carbon Nitride Nanosheets with Enhanced Photocatalytic Performance. Solar Rrl, 2020, 4, 2000017.	5.8	9
118	Molten state synthesis of nickel phosphides: mechanism and composition-activity correlation for electrochemical applications. Journal of Materials Chemistry A, 2021, 9, 27629-27638.	10.3	9
119	Design and synthesis of TiO2/C nanosheets with a directional cascade carriers transfer. Chemical Science, 0, , .	7.4	9
120	Carbonâ€Đoped Porous Polymeric Carbon Nitride with Enhanced Visible Light Photocatalytic and Photoelectrochemical Performance. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	9
121	Fluorescent Carbon Nitride Macrostructures Derived from Triazineâ€Based Cocrystals. Advanced Optical Materials, 2021, 9, 2100683.	7.3	8
122	Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A, 2020, 8, 8752-8760.	10.3	7
123	Photocatalytic degradation of organic pollutants through conjugated poly(azomethine) networks based on terthiophene–naphthalimide assemblies. RSC Advances, 2021, 11, 2701-2705.	3.6	7
124	Mediated Growth of Carbon Nitride Films via Spray oated Seeding Layers for Photoelectrochemical Applications. Advanced Sustainable Systems, 0, , 2100005.	5.3	6
125	Facile Synthesis of Carbonâ \in Sulfur Scaffold with Transitionâ \in Metal Sulfides and Oxides as Efficient Electrocatalysts for Oxygen Evolution Reaction. ChemCatChem, 2021, 13, 3749-3753.	3.7	6
126	Modifying Crystallinity, Morphology, and Photophysical Properties of Carbon Nitride by Using Crystals as Reactants. Israel Journal of Chemistry, 2020, 60, 544-549.	2.3	4

#	Article	IF	CITATIONS
127	Controlled Nucleation and Growth of Carbon Nitride Films on CNT Fiber Fabric for Photoelectrochemical Applications. Advanced Sustainable Systems, 0, , 2000265.	5.3	4
128	Coordinationâ€Directed Growth of Transitionâ€Metal–Crystallineâ€Carbon Composites with Controllable Metal Composition. Angewandte Chemie, 2019, 131, 15106-15110.	2.0	2
129	Synthesis of Carbon–Nitrogen–Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fireâ€Retardant Material. Angewandte Chemie, 2018, 130, 9912-9917.	2.0	1
130	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14142-14142.	3.3	1
131	Frontispiece: A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie - International Edition, 2018, 57, .	13.8	Ο
132	Frontispiz: A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie, 2018, 130, .	2.0	0
133	Graphitic Carbon Nitride Layers as Light-Harvesting Semiconductors for Photoelectrochemical Cells. , 0, , .		Ο
134	Water-splitting Photoelectrochemical Cells Based on Carbon Nitride Materials: Progress through Improved Deposition Techniques. , 0, , .		0
135	Photo- and electro-catalyst development: carbon nitride and NiFe-oxide for catalytic oxidation of organic molecules to value-added chemicals. , 0, , .		0