Masamichi Takami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor Necrosis Factor α Stimulates Osteoclast Differentiation by a Mechanism Independent of the Odf/Rankl–Rank Interaction. Journal of Experimental Medicine, 2000, 191, 275-286.	4.2	1,219
2	Osteoclast differentiation independent of the TRANCE–RANK–TRAF6 axis. Journal of Experimental Medicine, 2005, 202, 589-595.	4.2	335
3	Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nature Medicine, 2009, 15, 1066-1071.	15.2	270
4	A Novel Member of the Leukocyte Receptor Complex Regulates Osteoclast Differentiation. Journal of Experimental Medicine, 2002, 195, 201-209.	4.2	250
5	Stimulation by Toll-Like Receptors Inhibits Osteoclast Differentiation. Journal of Immunology, 2002, 169, 1516-1523.	0.4	216
6	Lipopolysaccharide Promotes the Survival of Osteoclasts Via Toll-Like Receptor 4, but Cytokine Production of Osteoclasts in Response to Lipopolysaccharide Is Different from That of Macrophages. Journal of Immunology, 2003, 170, 3688-3695.	0.4	168
7	Suppression of Osteoprotegerin Expression by Prostaglandin E2 Is Crucially Involved in Lipopolysaccharide-Induced Osteoclast Formation. Journal of Immunology, 2004, 172, 2504-2510.	0.4	145
8	The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11691-11696.	3.3	125
9	Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-?, IL-1, and RANKL. Journal of Cellular Physiology, 2002, 190, 101-108.	2.0	110
10	Osteoimmunology: interactions of the immune and skeletal systems. Molecules and Cells, 2004, 17, 1-9.	1.0	108
11	Interleukin-1β induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner. Biochemical Journal, 2005, 389, 315-323.	1.7	101
12	Heparin enhances osteoclastic bone resorption by inhibiting osteoprotegerin activity. Bone, 2007, 41, 165-174.	1.4	101
13	Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology, 2007, 120, 573-579.	2.0	89
14	Intracellular Calcium and Protein Kinase C Mediate Expression of Receptor Activator of Nuclear Factor-κB Ligand and Osteoprotegerin in Osteoblasts. Endocrinology, 2000, 141, 4711-4719.	1.4	85
15	Enhancement of Bone Morphogenetic Protein-2-Induced Ectopic Bone Formation by Transforming Growth Factor-β1. Tissue Engineering - Part A, 2011, 17, 597-606.	1.6	85
16	Importance of Membrane―or Matrixâ€Associated Forms of Mâ€CSF and RANKL/ODF in Osteoclastogenesis Supported by SaOSâ€4/3 Cells Expressing Recombinant PTH/PTHrP Receptors. Journal of Bone and Mineral Research, 2000, 15, 1766-1775.	3.1	84
17	Disabling of Receptor Activator of Nuclear Factor-κB (RANK) Receptor Complex by Novel Osteoprotegerin-like Peptidomimetics Restores Bone Loss in Vivo. Journal of Biological Chemistry, 2004, 279, 8269-8277.	1.6	83
18	Osteoclast Differentiation Induced by Synthetic Octacalcium Phosphate Through Receptor Activator of NF-κB Ligand Expression in Osteoblasts. Tissue Engineering - Part A, 2009, 15, 3991-4000.	1.6	83

#	Article	IF	CITATIONS
19	p38 Mitogen-Activated Protein Kinase Is Crucially Involved in Osteoclast Differentiation But Not in Cytokine Production, Phagocytosis, or Dendritic Cell Differentiation of Bone Marrow Macrophages. Endocrinology, 2003, 144, 4999-5005.	1.4	79
20	Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4729-4734.	3.3	79
21	Shared and Distinct Functions of the Transcription Factors IRF4 and IRF8 in Myeloid Cell Development. PLoS ONE, 2011, 6, e25812.	1.1	78
22	Gene Expression Profiling of Osteoclast Differentiation by Combined Suppression Subtractive Hybridization (SSH) and cDNA Microarray Analysis. DNA and Cell Biology, 2002, 21, 541-549.	0.9	63
23	Phosphodiesterase inhibitors stimulate osteoclast formation via TRANCE/RANKL expression in osteoblasts: possible involvement of ERK and p38 MAPK pathways. FEBS Letters, 2005, 579, 832-838.	1.3	59
24	Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. The Anatomical Record, 2002, 268, 137-146.	2.3	55
25	Osteoblastic cells induce fusion and activation of osteoclasts through a mechanism independent of macrophage-colony-stimulating factor production. Cell and Tissue Research, 1999, 298, 327-334.	1.5	44
26	Lysine-specific gingipain promotes lipopolysaccharide- and active-vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin. Biochemical Journal, 2009, 419, 159-166.	1.7	40
27	Porphyromonas gingivalis-derived Lysine Gingipain Enhances Osteoclast Differentiation Induced by Tumor Necrosis Factor-α and Interleukin-1β but Suppresses That by Interleukin-17A. Journal of Biological Chemistry, 2014, 289, 15621-15630.	1.6	40
28	Identification and Characterization of the Precursors Committed to Osteoclasts Induced by TNF-Related Activation-Induced Cytokine/Receptor Activator of NF-κB Ligand. Journal of Immunology, 2006, 177, 4360-4368.	0.4	38
29	Cells of Bone. , 2002, , 109-126.		38
30	Destruxins, cyclodepsipeptides, block the formation of actin rings and prominent clear zones and ruffled borders in osteoclasts. Bone, 2003, 33, 443-455.	1.4	35
31	Cytotoxic effects of NSL-1406, a new thienopyrimidine derivative, on leukocytes and osteoclasts. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 797-802.	1.0	33
32	Bone morphogenetic protein 2 enhances mouse osteoclast differentiation via increased levels of receptor activator of NF-κB ligand expression in osteoblasts. Cell and Tissue Research, 2010, 342, 213-220.	1.5	30
33	Bone loss caused by dopaminergic degeneration and levodopa treatment in Parkinson's disease model mice. Scientific Reports, 2019, 9, 13768.	1.6	30
34	Involvement of vacuolar H+-ATPase in incorporation of risedronate into osteoclasts. Bone, 2003, 32, 341-349.	1.4	29
35	Nitric Oxide in Pulp Cell Growth, Differentiation, and Mineralization. Journal of Dental Research, 2007, 86, 163-168.	2.5	29
36	Identification of two biologically crucial hydroxyl groups of (â^')-epigallocatechin gallate in osteoclast culture. Biochemical Pharmacology, 2007, 73, 34-43.	2.0	29

Masamichi Takami

#	Article	IF	CITATIONS
37	In Vitro Study of the Effects of Denosumab on Giant Cell Tumor of Bone: Comparison with Zoledronic Acid. Pathology and Oncology Research, 2019, 25, 409-419.	0.9	29
38	Feedback inhibition of osteoclastogenesis during inflammation by ILâ€10, M SF receptor shedding, and induction of IRF8. Annals of the New York Academy of Sciences, 2011, 1237, 88-94.	1.8	27
39	Cell Adhesion Signaling Regulates RANK Expression in Osteoclast Precursors. PLoS ONE, 2012, 7, e48795.	1.1	26
40	Honokiol Inhibits Osteoclast Differentiation and Function in Vitro. Biological and Pharmaceutical Bulletin, 2010, 33, 487-492.	0.6	25
41	BMP2 Differentially Regulates the Expression of Gremlin1 and Gremlin2, the Negative Regulators of BMP Function, During Osteoblast Differentiation. Calcified Tissue International, 2012, 91, 88-96.	1.5	25
42	Monocarboxylate Transporter-1 Is Required for Cell Death in Mouse Chondrocytic ATDC5 Cells Exposed to Interleukin-1β via Late Phase Activation of Nuclear Factor №B and Expression of Phagocyte-type NADPH Oxidase. Journal of Biological Chemistry, 2011, 286, 14744-14752.	1.6	24
43	Secretion of a Truncated Osteopetrosis-associated Transmembrane Protein 1 (OSTM1) Mutant Inhibits Osteoclastogenesis through Down-regulation of the B Lymphocyte-induced Maturation Protein 1 (BLIMP1)-Nuclear Factor of Activated T Cells c1 (NFATc1) Axis. Journal of Biological Chemistry, 2014, 289–35868-35881	1.6	24
44	Ca2+-ATPase Inhibitors and Ca2+-Ionophore Induce Osteoclast-like Cell Formation in the Cocultures of Mouse Bone Marrow Cells and Calvarial Cells. Biochemical and Biophysical Research Communications, 1997, 237, 111-115.	1.0	23
45	Biological effects of anti-RANKL antibody administration in pregnant mice and their newborns. Biochemical and Biophysical Research Communications, 2017, 491, 614-621.	1.0	23
46	Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α. Biochemical and Biophysical Research Communications, 2011, 410, 766-770.	1.0	22
47	TGFâ€Î² suppresses POEM expression through ERK1/2 and JNK in osteoblasts. FEBS Letters, 2007, 581, 5321-5326.	1.3	21
48	Anti-mouse RANKL Antibodies Inhibit Alveolar Bone Destruction in Periodontitis Model Mice. Biological and Pharmaceutical Bulletin, 2018, 41, 637-643.	0.6	21
49	Interaction of Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) and Vav3 in the Receptor Activator of Nuclear Factor IºB (RANK) Signaling Complex Enhances Osteoclastogenesis. Journal of Biological Chemistry, 2016, 291, 20643-20660.	1.6	19
50	A Delphinidin-Enriched Maqui Berry Extract Improves Bone Metabolism and Protects against Bone Loss in Osteopenic Mouse Models. Antioxidants, 2019, 8, 386.	2.2	19
51	Dimer formation of receptor activator of nuclear factor κB induces incomplete osteoclast formation. Biochemical and Biophysical Research Communications, 2004, 325, 229-234.	1.0	18
52	Smad4 is required to inhibit osteoclastogenesis and maintain bone mass. Scientific Reports, 2016, 6, 35221.	1.6	17
53	Singleton-Merten Syndrome–like Skeletal Abnormalities in Mice with Constitutively Activated MDA5. Journal of Immunology, 2019, 203, 1356-1368.	0.4	17
54	D-chiro-inositol Negatively Regulates the Formation of Multinucleated Osteoclasts by Down-Regulating NFATc1. Journal of Clinical Immunology, 2012, 32, 1360-1371.	2.0	15

Мазамісні Такамі

#	Article	IF	CITATIONS
55	Expression of nephronectin is inhibited by oncostatin M via both JAK/STAT and MAPK pathways. FEBS Open Bio, 2015, 5, 303-307.	1.0	15
56	Induction of osteoblastic differentiation of neural crest-derived stem cells from hair follicles. PLoS ONE, 2017, 12, e0174940.	1.1	15
57	Octacalcium phosphate suppresses chondrogenic differentiation of ATDC5 cells. Cell and Tissue Research, 2013, 352, 401-412.	1.5	14
58	Microscopic study on resorption of \hat{l}^2 -tricalcium phosphate materials by osteoclasts. Cytotechnology, 2015, 67, 727-732.	0.7	14
59	Localization and osteoblastic differentiation potential of neural crest-derived cells in oral tissues of adult mice. Biochemical and Biophysical Research Communications, 2015, 464, 1209-1214.	1.0	14
60	Down-regulation of Irf8 by Lyz2-cre/loxP accelerates osteoclast differentiation in vitro. Cytotechnology, 2017, 69, 443-450.	0.7	13
61	Treatment with synthetic glucocorticoid impairs bone metabolism, as revealed by in vivo imaging of osteoblasts and osteoclasts in medaka fish. Biomedicine and Pharmacotherapy, 2019, 118, 109101.	2.5	13
62	Differentiation and function of osteoclasts cultured on bone and cartilage. Journal of Electron Microscopy, 2005, 54, 529-540.	0.9	12
63	Analogs of 1α,25-dihydroxyvitamin D3 with high potency in induction of osteoclastogenesis and prevention of dendritic cell differentiation: Synthesis and biological evaluation of 2-substituted 19-norvitamin D analogs. Bioorganic and Medicinal Chemistry, 2006, 14, 4645-4656.	1.4	12
64	Requirement of osteoblastic cells for the fusion of preosteoclasts. Journal of Bone and Mineral Metabolism, 1998, 16, 151-157.	1.3	11
65	Nephronectin expression is regulated by SMAD signaling in osteoblast-like MC3T3-E1 cells. Biochemical and Biophysical Research Communications, 2012, 425, 390-392.	1.0	11
66	R848, a toll-like receptor 7 agonist, inhibits osteoclast differentiation but not survival or bone-resorbing function of mature osteoclasts. Cytotechnology, 2012, 64, 331-339.	0.7	11
67	Biological Effects of Anti-RANKL Antibody and Zoledronic Acid on Growth and Tooth Eruption in Growing Mice. Scientific Reports, 2019, 9, 19895.	1.6	11
68	Disruption of the mouse <i>Slc39a14</i> gene encoding zinc transporter <scp>ZIP</scp> 14 is associated with decreased bone mass, likely caused by enhanced bone resorption. FEBS Open Bio, 2018, 8, 655-663.	1.0	10
69	Myelination during fracture healing in vivo in myelin protein zero (p0) transgenic medaka line. Bone, 2020, 133, 115225.	1.4	10
70	Roles of monocarboxylate transporter subtypes in promotion and suppression of osteoclast differentiation and survival on bone. Scientific Reports, 2019, 9, 15608.	1.6	8
71	Novel gene Merlot inhibits differentiation and promotes apoptosis of osteoclasts. Bone, 2020, 138, 115494.	1.4	8
72	The inhibition of malignant melanoma cell invasion of bone by the TLR7 agonist R848 is dependent upon pro-inflammatory cytokines produced by bone marrow macrophages. Oncotarget, 2018, 9, 29934-29943.	0.8	8

Masamichi Takami

#	Article	IF	CITATIONS
73	Characterization of synovial cell clones isolated from rheumatoid arthritis patients: Possible involvement of TNF-α in reduction of osteoprotegerin in synovium. Cytokine, 2008, 41, 61-70.	1.4	7
74	Splenic extramedullary hemopoiesis caused by a dysfunctional mutation in the NF-κB-inducing kinase gene. Biochemical and Biophysical Research Communications, 2011, 414, 773-778.	1.0	7
75	Pax5 Negatively Regulates Osteoclastogenesis through Downregulation of Blimp1. International Journal of Molecular Sciences, 2021, 22, 2097.	1.8	7
76	IFN-γ down-regulates Secretoglobin 3A1 gene expression. Biochemical and Biophysical Research Communications, 2009, 379, 964-968.	1.0	6
77	Inhibition of hepatocyte growth factor/c-Met signalling abrogates joint destruction by suppressing monocyte migration in rheumatoid arthritis. Rheumatology, 2021, 60, 408-419.	0.9	6
78	Effects of Anti–Receptor Activator of Nuclear Factor Kappa B Ligand Antibody and Zoledronic Acid on Periapical Lesion Development in Mice. Journal of Endodontics, 2022, 48, 632-640.	1.4	6
79	Downregulation of Carbonic Anhydrase IX Promotes Col10a1 Expression in Chondrocytes. PLoS ONE, 2013, 8, e56984.	1.1	5
80	Expression of nephronectin is enhanced by 1α,25â€dihydroxyvitamin D 3. FEBS Open Bio, 2016, 6, 914-918.	1.0	5
81	Effects of lipid metabolism on mouse incisor dentinogenesis. Scientific Reports, 2020, 10, 5102.	1.6	5
82	Lipopolysaccharide (LPS) inhibits ectopic bone formation induced by bone morphogenetic protein-2 and TGF-β1 through IL-1β production. Journal of Oral Biosciences, 2020, 62, 44-51.	0.8	5
83	Neural crest-derived cells possess differentiation potential to keratinocytes in the process of wound healing. Biomedicine and Pharmacotherapy, 2022, 146, 112593.	2.5	5
84	Neural crest-derived cells in nasal conchae of adult mice contribute to bone regeneration. Biochemical and Biophysical Research Communications, 2021, 554, 173-178.	1.0	4
85	Suppressive Effects of the Leaf of Terminalia catappa L. on Osteoclast Differentiation In Vitro and Bone Weight Loss In Vivo. Journal of Nutritional Science and Vitaminology, 2012, 58, 129-135.	0.2	3
86	LPS administration increases CD11b+ c-Fms+ CD14+ cell population that possesses osteoclast differentiation potential in mice. Cytotechnology, 2017, 69, 529-537.	0.7	3
87	Effects of N-methyl-d-aspartate receptor antagonist MK-801 (dizocilpine) on bone homeostasis in mice. Journal of Oral Biosciences, 2020, 62, 131-138.	0.8	3
88	Receptor activator of NF-kappaB ligand induces the fusion of mononuclear preosteoclasts into multinucleated osteoclasts. Cytotechnology, 2000, 33, 203-211.	0.7	2
89	Osteoclast Generation. , 2008, , 175-192.		2
90	Bropirimine inhibits osteoclast differentiation through production of interferon-Î ² . Biochemical and Biophysical Research Communications, 2015, 467, 146-151.	1.0	2

Мазамісні Такамі

#	Article	IF	CITATIONS
91	Conditional deletion of CD98hc inhibits osteoclast development. Biochemistry and Biophysics Reports, 2016, 5, 203-210.	0.7	2
92	Effects of Mechanical Strain on Differentiation of Osteoblastic Cells. , 2008, , .		0
93	Effects of Anti-RANKL Antibody and Zoledronate on Development of Young Mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-4-39.	0.0	0
94	Administration of anti-RANKL antibody to pregnant mice results in impaired development of mammary gland and death of newborns. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-4-38.	0.0	0