Oded Cats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552807/publications.pdf Version: 2024-02-01

Ορερ ζάτς

#	Article	IF	CITATIONS
1	COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. Journal of Public Transportation, 2020, 22, .	1.2	490
2	Public transport planning adaption under the COVID-19 pandemic crisis: literature review of research needs and directions. Transport Reviews, 2021, 41, 374-392.	8.8	257
3	Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information. Networks and Spatial Economics, 2014, 14, 435-463.	1.6	127
4	Travel satisfaction with public transport: Determinants, user classes, regional disparities and their evolution. Transportation Research, Part A: Policy and Practice, 2017, 95, 64-84.	4.2	114
5	Impacts of Holding Control Strategies on Transit Performance. Transportation Research Record, 2011, 2216, 51-58.	1.9	96
6	A dynamic stochastic model for evaluating congestion and crowding effects in transit systems. Transportation Research Part B: Methodological, 2016, 89, 43-57.	5.9	93
7	Robustness assessment of link capacity reduction for complex networks: Application for public transport systems. Reliability Engineering and System Safety, 2017, 167, 544-553.	8.9	91
8	Effect of Real-Time Transit Information on Dynamic Path Choice of Passengers. Transportation Research Record, 2011, 2217, 46-54.	1.9	88
9	Drivers and barriers in adopting Mobility as a Service (MaaS) – A latent class cluster analysis of attitudes. Transportation Research, Part A: Policy and Practice, 2020, 132, 378-401.	4.2	88
10	Exploring key determinants of travel satisfaction for multi-modal trips by different traveler groups. Transportation Research, Part A: Policy and Practice, 2014, 67, 366-380.	4.2	85
11	Cycling or walking? Determinants of mode choice in the Netherlands. Transportation Research, Part A: Policy and Practice, 2019, 123, 7-23.	4.2	81
12	The prospects of fare-free public transport: evidence from Tallinn. Transportation, 2017, 44, 1083-1104.	4.0	79
13	Crowding valuation in urban tram and bus transportation based on smart card data. Transportmetrica A: Transport Science, 2020, 16, 23-42.	2.0	78
14	Mesoscopic simulation for transit operations. Transportation Research Part C: Emerging Technologies, 2010, 18, 896-908.	7.6	76
15	Topological evolution of a metropolitan rail transport network: The case of Stockholm. Journal of Transport Geography, 2017, 62, 172-183.	5.0	73
16	The Potential of Demand-Responsive Transport as a Complement to Public Transport: An Assessment Framework and an Empirical Evaluation. Transportation Research Record, 2018, 2672, 879-889.	1.9	72
17	Planning for the unexpected: The value of reserve capacity for public transport network robustness. Transportation Research, Part A: Policy and Practice, 2015, 81, 47-61.	4.2	60
18	Value of time and reliability for urban pooled on-demand services. Transportation Research Part C: Emerging Technologies, 2020, 115, 102621.	7.6	60

#	Article	IF	CITATIONS
19	An online learning approach to eliminate Bus Bunching in real-time. Applied Soft Computing Journal, 2016, 47, 460-482.	7.2	59
20	The value of new public transport links for network robustnessÂandÂredundancy. Transportmetrica A: Transport Science, 2015, 11, 819-835.	2.0	54
21	Bus-Holding Control Strategies. Transportation Research Record, 2012, 2274, 100-108.	1.9	53
22	Survey methodology for measuring parking occupancy: Impacts of an on-street parking pricing scheme in an urban center. Transport Policy, 2016, 47, 55-63.	6.6	51
23	Performance analysis and fleet requirements of automated demand-responsive transport systems as an urban public transport service. International Journal of Transportation Science and Technology, 2018, 7, 151-167.	3.6	49
24	What are the determinants of the willingness to share rides in pooled on-demand services?. Transportation, 2021, 48, 1733-1765.	4.0	49
25	Identification and classification of public transport activity centres in Stockholm using passenger flows data. Journal of Transport Geography, 2015, 48, 10-22.	5.0	48
26	Macroscopic multiple-station short-turning model in case of complete railway blockages. Transportation Research Part C: Emerging Technologies, 2018, 89, 113-132.	7.6	47
27	A data driven method for OD matrix estimation. Transportation Research Part C: Emerging Technologies, 2020, 113, 38-56.	7.6	47
28	Railway disruption management challenges and possible solution directions. Public Transport, 2017, 9, 343-364.	2.7	46
29	Individual, Travel, and Bus Stop Characteristics Influencing Travelers' Safety Perceptions. Transportation Research Record, 2018, 2672, 19-28.	1.9	46
30	Regularity-driven bus operation: Principles, implementation and business models. Transport Policy, 2014, 36, 223-230.	6.6	45
31	A microscopic model for optimal train short-turnings during complete blockages. Transportation Research Part B: Methodological, 2017, 105, 423-437.	5.9	45
32	Mesoscopic Modeling of Bus Public Transportation. Transportation Research Record, 2010, 2188, 9-18.	1.9	42
33	The underlying effect of public transport reliability on users' satisfaction. Transportation Research, Part A: Policy and Practice, 2019, 126, 83-93.	4.2	42
34	Real-Time Bus Arrival Information System: An Empirical Evaluation. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2016, 20, 138-151.	4.2	41
35	The robustness value of public transport development plans. Journal of Transport Geography, 2016, 51, 236-246.	5.0	40
36	Modeling the impacts of public transport reliability and travel information on passengers' waiting-time uncertainty. EURO Journal on Transportation and Logistics, 2017, 6, 247-270.	2.2	38

#	Article	IF	CITATIONS
37	Impact of railway disruption predictions and rescheduling on passenger delays. Journal of Rail Transport Planning and Management, 2018, 8, 103-122.	1.4	38
38	Evaluating a data-driven approach for choice set identification using GPS bicycle route choice data from Amsterdam. Travel Behaviour & Society, 2018, 13, 105-117.	5.0	38
39	Designing an Automated Demand-Responsive Transport System: Fleet Size and Performance Analysis for a Campus–Train Station Service. Transportation Research Record, 2016, 2542, 75-83.	1.9	37
40	Impacts of replacing a fixed public transport line by a demand responsive transport system: Case study of a rural area in Amsterdam. Research in Transportation Economics, 2020, 83, 100910.	4.1	37
41	Public Transport Pricing Policy. Transportation Research Record, 2014, 2415, 89-96.	1.9	36
42	Enhancing flexible transport services with demand-anticipatory insertion heuristics. Transportation Research, Part E: Logistics and Transportation Review, 2018, 110, 110-121.	7.4	36
43	Metropolitan rail network robustness. Physica A: Statistical Mechanics and Its Applications, 2020, 549, 124317.	2.6	36
44	Where shall we sync? Clustering passenger flows to identify urban public transport hubs and their key synchronization priorities. Transportation Research Part C: Emerging Technologies, 2019, 98, 433-448.	7.6	35
45	How does travel satisfaction sum up? An exploratory analysis in decomposing the door-to-door experience for multimodal trips. Transportation, 2019, 46, 1615-1642.	4.0	34
46	A review of public transport transfer coordination at the tactical planning phase. Transportation Research Part C: Emerging Technologies, 2021, 133, 103450.	7.6	33
47	Evolution of Satisfaction with Public Transport and Its Determinants in Sweden. Transportation Research Record, 2015, 2538, 86-95.	1.9	31
48	Public transport fare elasticities from smartcard data: Evidence from a natural experiment. Transport Policy, 2021, 105, 35-43.	6.6	31
49	How Do People Cycle in Amsterdam, Netherlands?: Estimating Cyclists' Route Choice Determinants with GPS Data from an Urban Area. Transportation Research Record, 2017, 2662, 75-82.	1.9	30
50	Beyond a complete failure: the impact of partial capacity degradation on public transport network vulnerability. Transportmetrica B, 2018, 6, 77-96.	2.3	30
51	Latent classes of daily mobility patterns: the relationship with attitudes towards modes. Transportation, 2020, 47, 1843-1866.	4.0	30
52	Constructing Transit Origin–Destination Matrices with Spatial Clustering. Transportation Research Record, 2017, 2652, 39-49.	1.9	30
53	Recovery time and propagation effects of passenger transport disruptions. Physica A: Statistical Mechanics and Its Applications, 2018, 505, 7-17.	2.6	29
54	Reconciling transfer synchronization and service regularity: real-time control strategies using passenger data. Transportmetrica A: Transport Science, 2019, 15, 215-243.	2.0	29

#	Article	IF	CITATIONS
55	Understanding ride-sourcing drivers' behaviour and preferences: Insights from focus groups analysis. Research in Transportation Business and Management, 2020, 37, 100516.	2.9	29
56	Exact matching of attractive shared rides (ExMAS) for system-wide strategic evaluations. Transportation Research Part B: Methodological, 2020, 139, 285-310.	5.9	28
57	Evaluating the impacts and benefits of public transport design and operational measures. Transport Policy, 2016, 48, 105-116.	6.6	26
58	Optimal frequency setting of metro services in the age of COVID-19 distancing measures. Transportmetrica A: Transport Science, 2022, 18, 807-827.	2.0	26
59	Multi-agent Transit Operations and Assignment Model. Procedia Computer Science, 2013, 19, 809-814.	2.0	25
60	Robust Network-Wide Bus Scheduling With Transfer Synchronizations. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 4582-4592.	8.0	25
61	Relocating shared automated vehicles under parking constraints: assessing the impact of different strategies for on-street parking. Transportation, 2021, 48, 1931-1965.	4.0	25
62	Passenger Travel Time Reliability for Multimodal Public Transport Journeys. Transportation Research Record, 2019, 2673, 149-160.	1.9	24
63	Traveller behaviour in public transport in the early stages of the COVID-19 pandemic in the Netherlands. Transportation Research, Part A: Policy and Practice, 2022, 159, 357-371.	4.2	24
64	Optimizing the number and location of time point stops. Public Transport, 2014, 6, 215-235.	2.7	21
65	The experienced mode choice set and its determinants: Commuting trips in the Netherlands. Transportation Research, Part A: Policy and Practice, 2020, 132, 744-758.	4.2	21
66	Willingness to pay for safety improvements in passenger air travel. Journal of Air Transport Management, 2017, 62, 165-175.	4.5	20
67	Beyond the dichotomy: How ride-hailing competes with and complements public transport. PLoS ONE, 2022, 17, e0262496.	2.5	20
68	Measuring Bus Drivers' Occupational Stress under Changing Working Conditions. Transportation Research Record, 2014, 2415, 13-20.	1.9	19
69	Constructing Spatiotemporal Load Profiles of Transit Vehicles with Multiple Data Sources. Transportation Research Record, 2018, 2672, 175-186.	1.9	19
70	Integrating network science and public transport accessibility analysis for comparative assessment. Journal of Transport Geography, 2019, 80, 102505.	5.0	18
71	Multiline holding based control for lines merging to a shared transit corridor. Transportmetrica B, 2019, 7, 1062-1095.	2.3	18
72	Can passenger flow distribution be estimated solely based on network properties in public transport systems?. Transportation, 2020, 47, 2757-2776.	4.0	18

#	Article	IF	CITATIONS
73	Modelling the effects of real-time crowding information in urban public transport systems. Transportmetrica A: Transport Science, 2021, 17, 675-713.	2.0	18
74	The Theory of Transit Assignment: Basic Modelling Frameworks. Springer Tracts on Transportation and Traffic, 2016, , 287-386.	0.2	18
75	Multi-constrained bus holding control in time windows with branch and bound and alternating minimization. Transportmetrica B, 2019, 7, 1258-1285.	2.3	17
76	Frequency and Vehicle Capacity Determination using a Dynamic Transit Assignment Model. Transportation Research Record, 2019, 2673, 574-585.	1.9	17
77	Modelling growth principles of metropolitan public transport networks. Journal of Transport Geography, 2020, 82, 102567.	5.0	17
78	Predicting disruptions and their passenger delay impacts for public transport stops. Transportation, 2021, 48, 1703-1731.	4.0	17
79	Designing bus rapid transit systems: Lessons on service reliability and operations. Case Studies on Transport Policy, 2020, 8, 946-953.	2.5	16
80	A passenger-pedestrian model to assess platform and train usage from automated data. Transportation Research, Part A: Policy and Practice, 2020, 132, 948-968.	4.2	16
81	Modelling public transport onâ€board congestion: comparing scheduleâ€based and agentâ€based assignment approaches and their implications. Journal of Advanced Transportation, 2016, 50, 1209-1224.	1.7	15
82	Railway disruption timetable: Short-turnings in case of complete blockage. , 2016, , .		15
83	Optimal infrastructure capacity of automated on-demand rail-bound transit systems. Transportation Research Part B: Methodological, 2018, 117, 378-392.	5.9	15
84	Analysing the impact of COVID-19 risk perceptions on route choice behaviour in train networks. PLoS ONE, 2022, 17, e0264805.	2.5	14
85	Determinants of Bus Riding Time Deviations: Relationship between Driving Patterns and Transit Performance. Journal of Transportation Engineering Part A: Systems, 2019, 145, .	1.4	13
86	Joint optimisation of regular and demand-responsive transit services. Transportmetrica A: Transport Science, 2023, 19, .	2.0	13
87	Improving Public Transport Decision Making, Planning and Operations by Using Big Data: Cases from Sweden and the Netherlands. , 2015, , .		12
88	Evaluating the added-value of online bus arrival prediction schemes. Transportation Research, Part A: Policy and Practice, 2016, 86, 35-55.	4.2	12
89	Transitioning towards the deployment of line-based autonomous buses: Consequences for service frequency and vehicle capacity. Transportation Research, Part A: Policy and Practice, 2020, 138, 491-507.	4.2	12
90	Determinants of passengers' metro car choice revealed through automated data sources: a Stockholm case study. Transportmetrica A: Transport Science, 2020, 16, 529-549.	2.0	12

#	Article	lF	CITATIONS
91	Investigating Potential Transit Ridership by Fusing Smartcard and Global System for Mobile Communications Data. Transportation Research Record, 2017, 2652, 50-58.	1.9	12
92	Real-time short-turning in high frequency bus services based on passenger cost. , 2017, , .		11
93	Simulating the effects of real-time crowding information in public transport networks. , 2017, , .		11
94	Automated Setting of Bus Schedule Coverage Using Unsupervised Machine Learning. Lecture Notes in Computer Science, 2016, , 552-564.	1.3	11
95	Learning and Adaptation in Dynamic Transit Assignment Models for Congested Networks. Transportation Research Record, 2020, 2674, 113-124.	1.9	10
96	Parking space for shared automated vehicles: How less can be more. Transportation Research, Part A: Policy and Practice, 2021, 143, 61-77.	4.2	10
97	Modelling virus spreading in ride-pooling networks. Scientific Reports, 2021, 11, 7201.	3.3	10
98	Taking the path less travelled: Valuation of denied boarding in crowded public transport systems. Transportation Research, Part A: Policy and Practice, 2021, 147, 1-13.	4.2	10
99	Headway variability in public transport: a review of metrics, determinants, effects for quality of service and control strategies. Transport Reviews, 2022, 42, 337-361.	8.8	10
100	Evaluation of real-time holding strategies for improved bus service reliability. , 2010, , .		9
101	Implementing a Behavioural Pilot Survey for the Stage-based Study of the whole Journey Traveller Experience. Transportation Research Procedia, 2015, 11, 172-184.	1.5	9
102	Feature Selection Issues in Long-Term Travel Time Prediction. Lecture Notes in Computer Science, 2016, , 98-109.	1.3	9
103	Lessons and Evaluation of a Headway Control Experiment in Washington, D.C Transportation Research Record, 2019, 2673, 430-438.	1.9	9
104	Is flat fare fair? Equity impact of fare scheme change. Transport Policy, 2020, 91, 48-58.	6.6	9
105	Quantifying travellers' evaluation of waiting time uncertainty in public transport networks. Travel Behaviour & Society, 2021, 25, 209-222.	5.0	9
106	A review of public transport transfer synchronisation at the real-time control phase. Transport Reviews, 2023, 43, 88-107.	8.8	9
107	Potential of on-demand services for urban travel. Transportation, 2023, 50, 1289-1321.	4.0	9
108	Mitigating bus bunching with real-timeÂcrowdingÂinformation. Transportation, 2023, 50, 1003-1030.	4.0	9

#	Article	IF	CITATIONS
109	Strategic Planning and Prospects of Rail-Bound Demand Responsive Transit. Transportation Research Record, 2018, 2672, 404-410.	1.9	8
110	Estimation of metro network passenger delay from individual trajectories. Transportation Research Part C: Emerging Technologies, 2020, 117, 102704.	7.6	8
111	Timetable Recovery After Disturbances in Metro Operations: An Exact and Efficient Solution. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 4075-4085.	8.0	8
112	Quantifying the cascading effects of passenger delays. Reliability Engineering and System Safety, 2021, 212, 107629.	8.9	8
113	Unravelling individual mobility temporal patterns using longitudinal smart card data. Research in Transportation Business and Management, 2022, 43, 100816.	2.9	8
114	Real-time bus arrival information system-an empirical evaluation. , 2013, , .		7
115	If you are late, everyone is late: late passenger arrival and ride-pooling systems' performance. Transportmetrica A: Transport Science, 2021, 17, 1077-1100.	2.0	7
116	Fleet size determination for a mixed private and pooled on-demand system with elastic demand. Transportmetrica A: Transport Science, 2021, 17, 897-920.	2.0	7
117	Network design for line-based autonomous bus services. Transportation, 2022, 49, 467-502.	4.0	7
118	Simulation of fixed versus on-demand station-based feeder operations. Transportation Research Part C: Emerging Technologies, 2021, 132, 103401.	7.6	7
119	Impact of introducing a metro line on urban bus services. Case Studies on Transport Policy, 2022, 10, 940-947.	2.5	7
120	Real-time bus departure time predictions: Vehicle trajectory and countdown display analysis. , 2014, , .		6
121	Analysis of network-wide transit passenger flows based on principal component analysis. , 2017, , .		6
122	Measuring spill-over effects of disruptions in public transport networks. , 2017, , .		6
123	Does ride-sourcing absorb the demand for car and public transport in Amsterdam?. , 2019, , .		6
124	Fair accessibility – Operationalizing the distributional effects of policy interventions. Journal of Transport Geography, 2020, 89, 102890.	5.0	6
125	Multi-modal network evolution in polycentric regions. Journal of Transport Geography, 2021, 96, 103159.	5.0	6
126	How to split the costs and charge the travellers sharing a ride? aligning system's optimum with users' equilibrium. Furopean lournal of Operational Research, 2022, 301, 956-973.	5.7	6

#	Article	IF	CITATIONS
127	On the scalability of private and pooled on-demand services for urban mobility in Amsterdam. Transportation Planning and Technology, 2022, 45, 2-18.	2.0	6
128	Simulating two-sided mobility platforms with MaaSSim. PLoS ONE, 2022, 17, e0269682.	2.5	6
129	An Agent-based Approach for Modeling Real-time Travel Information in Transit Systems. Procedia Computer Science, 2014, 32, 744-749.	2.0	5
130	Analysis and Prediction of Disruptions in Metro Networks. , 2019, , .		5
131	Examining circuity of urban transit networks from an equity perspective. Journal of Transport Geography, 2021, 91, 102980.	5.0	5
132	A holding control strategy for diverging bus lines. Transportation Research Part C: Emerging Technologies, 2021, 126, 103087.	7.6	5
133	Evaluating the impact of waiting time reliability on route choice using smart card data. Transportmetrica A: Transport Science, 2023, 19, .	2.0	5
134	Perception of overlap in multi-modal urban transit route choice. Transportmetrica A: Transport Science, 2023, 19, .	2.0	5
135	Real-time predictions for Light rail train systems. , 2014, , .		4
136	A hybrid scheme for realâ€ŧime prediction of bus trajectories. Journal of Advanced Transportation, 2016, 50, 2130-2149.	1.7	4
137	Heuristic Coarsening for Generating Multiscale Transport Networks. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 2240-2253.	8.0	4
138	The potential of real-time crowding information in reducing bus bunching under different network saturation levels. , 2021, , .		4
139	Individual and Synergetic Effects of Transit Service Improvement Strategies: Simulation and Validation. Journal of Transportation Engineering Part A: Systems, 2017, 143, .	1.4	3
140	Calibrating Route Choice Sets for an Urban Public Transport Network using Smart Card Data. , 2019, , .		3
141	Quantification and control of disruption propagation in multi-level public transport networks. International Journal of Transportation Science and Technology, 2022, 11, 83-106.	3.6	3
142	Measuring quality across the whole journey. , 2014, , 316-323.		3
143	Evolution of labour supply in ridesourcing. Transportmetrica B, 2022, 10, 599-626.	2.3	3
144	Robust Control for Regulating Frequent Bus Service: Supporting the Implementation of Headway-Based Holding Strategies. Transportation Research Record, 2019, 2673, 654-665.	1.9	2

#	Article	IF	CITATIONS
145	Distribution of passenger costs in fixed versus flexible station-based feeder services. Transportation Research Procedia, 2020, 47, 179-186.	1.5	2
146	Voting with one's feet: Unraveling urban centers attraction using visiting frequency. Cities, 2022, 127, 103773.	5.6	2
147	The Value of New Cross-Radial Links for Public Transport Network Robustness. , 2014, , .		1
148	A compact and scalable representation of network traffic dynamics using shapes and its applications. Transportation Research Part C: Emerging Technologies, 2020, 121, 102850.	7.6	1
149	Evaluating crowding in individual train cars using a dynamic transit assignment model. Transportmetrica B, 2021, 9, 693-711.	2.3	1
150	Applications and Future Developments: Modeling Software and Advanced Applications. Springer Tracts on Transportation and Traffic, 2016, , 521-560.	0.2	1
151	Combining Speed Adjustment and Holding Control for Regularity-based Transit Operations. , 2019, , .		0