Gary B Huffnagle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the Lung Microbiome in the "Healthy―Smoker and in COPD. PLoS ONE, 2011, 6, e16384.	2.5	767
2	The Microbiome and the Respiratory Tract. Annual Review of Physiology, 2016, 78, 481-504.	13.1	622
3	Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. MBio, 2015, 6, e00037.	4.1	601
4	Cc Chemokine Receptor 2 Is Critical for Induction of Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2000, 192, 899-906.	8.5	496
5	The emerging world of the fungal microbiome. Trends in Microbiology, 2013, 21, 334-341.	7.7	485
6	Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nature Microbiology, 2016, 1, 16113.	13.3	433
7	Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Annals of the American Thoracic Society, 2015, 12, 821-830.	3.2	390
8	The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease. PLoS Pathogens, 2015, 11, e1004923.	4.7	390
9	The role of the microbiome in exacerbations of chronic lung diseases. Lancet, The, 2014, 384, 691-702.	13.7	366
10	Bacterial Topography of the Healthy Human Lower Respiratory Tract. MBio, 2017, 8, .	4.1	366
11	Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respiratory Medicine,the, 2014, 2, 548-556.	10.7	353
12	Application of a Neutral Community Model To Assess Structuring of the Human Lung Microbiome. MBio, 2015, 6, .	4.1	325
13	Role of Antibiotics and Fungal Microbiota in Driving Pulmonary Allergic Responses. Infection and Immunity, 2004, 72, 4996-5003.	2.2	282
14	Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respiratory Medicine,the, 2014, 2, 238-246.	10.7	242
15	Development of Allergic Airway Disease in Mice following Antibiotic Therapy and Fungal Microbiota Increase: Role of Host Genetics, Antigen, and Interleukin-13. Infection and Immunity, 2005, 73, 30-38.	2.2	238
16	Candida albicans and Bacterial Microbiota Interactions in the Cecum during Recolonization following Broad-Spectrum Antibiotic Therapy. Infection and Immunity, 2012, 80, 3371-3380.	2.2	230
17	Regulation of Candida albicans Morphogenesis by Fatty Acid Metabolites. Infection and Immunity, 2004, 72, 6206-6210.	2.2	216
18	Pathogenic Yeasts Cryptococcus neoformans and Candida albicans Produce Immunomodulatory Prostaglandins. Infection and Immunity, 2001, 69, 2957-2963.	2.2	210

GARY B HUFFNAGLE

#	Article	IF	CITATIONS
19	Lung Microbiota Contribute to Pulmonary Inflammation and Disease Progression in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1127-1138.	5.6	205
20	Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes. Clinical Microbiology Reviews, 2003, 16, 517-533.	13.6	203
21	Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 555-563.	5.6	202
22	Microbiology, Genomics, and Clinical Significance of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans. Clinical Microbiology Reviews, 2014, 27, 927-948.	13.6	200
23	Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 438-445.	5.6	195
24	The Lung Microbiota of Healthy Mice Are Highly Variable, Cluster by Environment, and Reflect Variation in Baseline Lung Innate Immunity. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 497-508.	5.6	189
25	Changes in the Lung Microbiome following Lung Transplantation Include the Emergence of Two Distinct Pseudomonas Species with Distinct Clinical Associations. PLoS ONE, 2014, 9, e97214.	2.5	162
26	Interplay between the Gastric Bacterial Microbiota and Candida albicans during Postantibiotic Recolonization and Gastritis. Infection and Immunity, 2012, 80, 150-158.	2.2	130
27	Microbes Are Associated with Host Innate Immune Response in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 208-219.	5.6	130
28	Analysis of Culture-Dependent versus Culture-Independent Techniques for Identification of Bacteria in Clinically Obtained Bronchoalveolar Lavage Fluid. Journal of Clinical Microbiology, 2014, 52, 3605-3613.	3.9	129
29	Modulation of Post-Antibiotic Bacterial Community Reassembly and Host Response by Candida albicans. Scientific Reports, 2013, 3, 2191.	3.3	128
30	Rapid Pathogen Identification in Bacterial Pneumonia Using Real-Time Metagenomics. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1610-1612.	5.6	127
31	Homeostasis and its disruption in the lung microbiome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1047-L1055.	2.9	112
32	The Microbiota and Allergies/Asthma. PLoS Pathogens, 2010, 6, e1000549.	4.7	108
33	Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Science Translational Medicine, 2020, 12, .	12.4	97
34	The "Microflora Hypothesis―of Allergic Disease. Advances in Experimental Medicine and Biology, 2008, 635, 113-134.	1.6	95
35	Dysbiosis in the intensive care unit: Microbiome science coming to the bedside. Journal of Critical Care, 2017, 38, 84-91.	2.2	82
36	A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. Journal of Leukocyte Biology, 2016, 100, 943-950.	3.3	81

GARY B HUFFNAGLE

#	Article	IF	CITATIONS
37	The Lung Microbiome during Health and Disease. International Journal of Molecular Sciences, 2021, 22, 10872.	4.1	72
38	The significance of <i>Candida</i> in the human respiratory tract: our evolving understanding. Pathogens and Disease, 2017, 75, .	2.0	68
39	Cell-associated bacteria in the human lung microbiome. Microbiome, 2014, 2, 28.	11.1	66
40	The role of IL-5 in bleomycin-induced pulmonary fibrosis. Journal of Leukocyte Biology, 1998, 64, 657-666.	3.3	62
41	Tryptophan Catabolism Restricts IFN-γ–Expressing Neutrophils and <i>Clostridium difficile</i> Immunopathology. Journal of Immunology, 2014, 193, 807-816.	0.8	55
42	The respiratory microbiome: an underappreciated player inÂtheÂhuman response to inhaled pollutants?. Annals of Epidemiology, 2016, 26, 355-359.	1.9	55
43	Innate and adaptive determinants of host susceptibility to medically important fungi. Current Opinion in Microbiology, 2003, 6, 344-350.	5.1	50
44	Interleukinâ€23 (<scp>IL</scp> â€23), independent of <scp>IL</scp> â€17 and <scp>IL</scp> â€22, drives neutrop recruitment and innate inflammation during <i>Clostridium difficile</i> colitis in mice. Immunology, 2016, 147, 114-124.	ohil 4.4	49
45	The bacterial microbiota in inflammatory lung diseases. Clinical Immunology, 2015, 159, 177-182.	3.2	40
46	Intraalveolar Catecholamines and the Human Lung Microbiome. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 257-259.	5.6	36
47	Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity. Clinical Microbiology Reviews, 2021, 34, e0032320.	13.6	36
48	Role of GM-CSF in the inflammatory cytokine network that regulates neutrophil influx into the colonic mucosa during <i>Clostridium difficile</i> infection in mice. Gut Microbes, 2014, 5, 10-9.	9.8	35
49	Lung Microbiome Is Influenced by the Environment and Asthmatic Status in an Equine Model of Asthma. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 189-197.	2.9	33
50	Lung microbiota associations with clinical features of COPD in the SPIROMICS cohort. Npj Biofilms and Microbiomes, 2021, 7, 14.	6.4	33
51	Critical Relevance of Stochastic Effects on Low-Bacterial-Biomass 16S rRNA Gene Analysis. MBio, 2020, 11, .	4.1	32
52	Lung Microbiota and Metabolites Collectively Associate with Clinical Outcomes in Milder Stage Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 427-439.	5.6	31
53	Role of interferonâ€ <i>γ</i> and inflammatory monocytes in driving colonic inflammation during acute <i>Clostridium difficile</i> infection in mice. Immunology, 2017, 150, 468-477.	4.4	28
54	Whole lung tissue is the preferred sampling method for amplicon-based characterization of murine lung microbiota. Microbiome, 2021, 9, 99.	11.1	24

GARY B HUFFNAGLE

#	Article	IF	CITATIONS
55	Respiratory Tract Colonization by Candida Species Portends Worse Outcomes in Immunocompromised Patients. Clinical Pulmonary Medicine, 2018, 25, 197-201.	0.3	18
56	Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics, 2015, 16, 1032.	2.8	15
57	Increase in dietary fiber dampens allergic responses in the lung. Nature Medicine, 2014, 20, 120-121.	30.7	10
58	Interkingdom Communication and Regulation of Mucosal Immunity by the Microbiome. Journal of Infectious Diseases, 2021, 223, S236-S240.	4.0	10
59	Genome Sequences of 12 <i>Pseudomonas lundensis</i> Strains Isolated from the Lungs of Humans. Genome Announcements, 2018, 6, .	0.8	8
60	Toll-like receptors, environmental caging, and lung dysbiosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L404-L415.	2.9	8
61	Early-Life Lung and Gut Microbiota Development and Respiratory Syncytial Virus Infection. Frontiers in Immunology, 2022, 13, 877771.	4.8	7
62	Another piece in the â€~research mosaic' that describes the role of the lung microbiome in COPD. Thorax, 2016, 71, 777-778.	5.6	4
63	Draft Genome Sequences of Five Pseudomonas fluorescens Subclade I and II Strains, Isolated from Human Respiratory Samples. Genome Announcements, 2015, 3, .	0.8	3
64	Reply: Clinical Metagenomics for the Diagnosis of Hospital-acquired Infections: Promises and Hurdles. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1618-1619.	5.6	3
65	High-Quality Genome Reconstruction of Candida albicans CHN1 Using Nanopore and Illumina Sequencing and Hybrid Assembly. Microbiology Resource Announcements, 2021, 10, e0029921.	0.6	3
66	The Psychrotrophic Pseudomonas lundensis, a Non- <i>aeruginosa</i> Pseudomonad, Has a Type III Secretion System of the Ysc Family, Which Is Transcriptionally Active at 37°C. MBio, 2022, 13, e0386921.	4.1	3
67	A. Casadevall and J.R. Perfect, Cryptococcus neoformans. Mycopathologia, 1999, 147, 59-60.	3.1	2
68	Fungal Interactions with Leukocytes. , 0, , 555-563.		1
69	Complete Genome Sequences of Pseudomonas lundensis Strains M101 and M105, Isolated from 1% Pasteurized Milk. Microbiology Resource Announcements, 2021, 10, e0071121.	0.6	1
70	Pulmonary Innate and Adaptive Defenses against Cryptococcus. , 0, , 451-464.		0
71	Toll-Interacting Protein and Altered Lung Microbiota in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	0