
Leslie Pick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552551/publications.pdf Version: 2024-02-01

LEGUE DICK

#	Article	IF	CITATIONS
1	Anteriorâ€posterior patterning of segments in <i>Anopheles stephensi</i> offers insights into the transition from sequential to simultaneous segmentation in holometabolous insects. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 116-130.	1.3	1
2	The <i>fushi tarazu</i> zebra element is not required for <i>Drosophila</i> viability or fertility. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
3	Regulatory gene function handoff allows essential gene loss in mosquitoes. Communications Biology, 2020, 3, 540.	4.4	6
4	High-Efficiency CRISPR/Cas9 Mutagenesis of the <i>white</i> Gene in the Milkweed Bug <i>Oncopeltus fasciatu</i> s. Genetics, 2020, 215, 1027-1037.	2.9	29
5	Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genomics, 2020, 21, 227.	2.8	60
6	Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence. EvoDevo, 2020, 11, 9.	3.2	7
7	Shifting roles of <i>Drosophila</i> pair-rule gene orthologs: segmental expression and function in the milkweed bug <i>Oncopeltus fasciatus</i> . Development (Cambridge), 2019, 146, .	2.5	19
8	Dynamic expression of Drosophila segmental cell surface-encoding genes and their pair-rule regulators. Developmental Biology, 2019, 447, 147-156.	2.0	11
9	Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biology, 2019, 20, 64.	8.8	114
10	Solution Nuclear Magnetic Resonance Studies of the Ligand-Binding Domain of an Orphan Nuclear Receptor Reveal a Dynamic Helix in the Ligand-Binding Pocket. Biochemistry, 2018, 57, 1977-1986.	2.5	4
11	Effect of Genetic Diagnosis on Patients with Previously Undiagnosed Disease. New England Journal of Medicine, 2018, 379, 2131-2139.	27.0	261
12	The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Current Topics in Developmental Biology, 2017, 125, 39-70.	2.2	15
13	Conservation and variation in pair-rule gene expression and function in the intermediate-germ beetle, <i>Dermestes maculatus</i> . Development (Cambridge), 2017, 144, 4625-4636.	2.5	22
14	Drosophila as a Model for Diabetes and Diseases of Insulin Resistance. Current Topics in Developmental Biology, 2017, 121, 397-419.	2.2	107
15	Establishment of molecular genetic approaches to study gene expression and function in an invasive hemipteran, Halyomorpha halys. EvoDevo, 2017, 8, 15.	3.2	15
16	Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers. PLoS ONE, 2016, 11, e0163128.	2.5	9
17	Evo-Devo. Current Topics in Developmental Biology, 2016, 117, 253-274.	2.2	8
18	Rearing and Double-stranded RNA-mediated Gene Knockdown in the Hide Beetle, Dermestes maculatus . Journal of Visualized Experiments, 2016, , .	0.3	2

LESLIE PICK

#	Article	IF	CITATIONS
19	Editorial Overview: Development, regulation and evolution of organ systems. Current Opinion in Insect Science, 2016, 13, vii-ix.	4.4	0
20	Hox genes, evo-devo, and the case of the ftz gene. Chromosoma, 2016, 125, 535-551.	2.2	27
21	Dermestes maculatus: an intermediate-germ beetle model system for evo-devo. EvoDevo, 2015, 6, 32.	3.2	24
22	Independent signaling by Drosophila insulin receptor for axon guidance and growth. Frontiers in Physiology, 2014, 4, 385.	2.8	18
23	Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys. BMC Genomics, 2014, 15, 738.	2.8	62
24	Functional conservation of Drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity. Development Genes and Evolution, 2013, 223, 199-205.	0.9	13
25	Conservation and Variation in <i>Hox</i> Genes: How Insect Models Pioneered the Evo-Devo Field. Annual Review of Entomology, 2013, 58, 161-179.	11.8	58
26	Variation and constraint in <i>Hox</i> gene evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2211-2216.	7.1	24
27	The evolving role of the orphan nuclear receptor <i>ftzâ€f1</i> , a pairâ€rule segmentation gene. Evolution & Development, 2013, 15, 406-417.	2.0	26
28	Insulin Stimulates Translocation of Human GLUT4 to the Membrane in Fat Bodies of Transgenic Drosophila melanogaster. PLoS ONE, 2013, 8, e77953.	2.5	15
29	<i>Hox</i> gene evolution: multiple mechanisms contributing to evolutionary novelties. Annals of the New York Academy of Sciences, 2012, 1256, 15-32.	3.8	52
30	Rapid isolation of gene homologs across taxa: Efficient identification and isolation of gene orthologs from non-model organism genomes, a technical report. EvoDevo, 2011, 2, 7.	3.2	0
31	<i>ftz</i> Evolution: Findings, hypotheses and speculations (response to DOI 10.1002/bies.201100019). BioEssays, 2011, 33, 910-918.	2.5	11
32	Surprising flexibility in a conserved Hox transcription factor over 550 million years of evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18040-18045.	7.1	35
33	The POU Transcription Factor Drifter/Ventral veinless Regulates Expression of <i>Drosophila</i> Immune Defense Genes. Molecular and Cellular Biology, 2010, 30, 3672-3684.	2.3	39
34	Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19617-19622.	7.1	177
35	Stripy Ftz target genes are coordinately regulated by Ftz-F1. Developmental Biology, 2009, 335, 442-453.	2.0	15
36	Isolation of regulators of Drosophila immune defense genes by a double interaction screen in yeast. Insect Biochemistry and Molecular Biology, 2007, 37, 202-212.	2.7	11

LESLIE PICK

#	Article	IF	CITATIONS
37	Computational Identification of Ftz/Ftz-F1 downstream target genes. Developmental Biology, 2006, 299, 78-90.	2.0	19
38	The Ftzâ€F1 family: Orphan nuclear receptors regulated by novel protein–protein interactions. Advances in Developmental Biology (Amsterdam, Netherlands), 2006, 16, 255-296.	0.4	12
39	Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations. Human Molecular Genetics, 2006, 15, 543-553.	2.9	66
40	Cofactor-Interaction Motifs and the Cooption of a Homeotic Hox Protein into the Segmentation Pathway of Drosophila melanogaster. Current Biology, 2005, 15, 643-649.	3.9	79
41	Axons Guided by Insulin Receptor in Drosophila Visual System. Science, 2003, 300, 502-505.	12.6	136
42	The nuclear receptor Ftz-F1 and homeodomain protein Ftz interact through evolutionarily conserved protein domains. Mechanisms of Development, 2001, 107, 39-53.	1.7	52
43	Drosophila fushi tarazu. Current Biology, 2001, 11, 1403-1412.	3.9	75
44	A Double Interaction Screen identifies positive and negative ftz gene regulators and Ftz-interacting proteins. Mechanisms of Development, 1999, 83, 95-105.	1.7	30
45	Segmentation: Painting stripes from flies to vertebrates. , 1998, 23, 1-10.		23
46	How does thefushi tarazu gene activateengrailed in theDrosophila embryo?. , 1998, 23, 28-34.		11
47	A Binding Site for Multiple Transcriptional Activators in the <i>fushi tarazu</i> Proximal Enhancer Is Essential for Gene Expression In Vivo. Molecular and Cellular Biology, 1998, 18, 3384-3394.	2.3	23
48	Segmentation: Painting stripes from flies to vertebrates. Genesis, 1998, 23, 1-10.	2.1	1
49	The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature, 1997, 385, 552-555.	27.8	184
50	Structure and regulation of the fushi tarazu gene from Drosophila hydei. Roux's Archives of Developmental Biology, 1995, 205, 160-170.	1.2	11
51	Targeted ribozymes reveal a conserved function of the Drosophila paired gene in sensory organ development. Mechanisms of Development, 1995, 53, 323-328.	1.7	14
52	Non-periodic cues generate seven ftz stripes in the Drosophila embryo. Mechanisms of Development, 1995, 50, 163-175.	1.7	55
53	Multiple regulatory elements direct the complex expression pattern of the Drosophila segmentation gene paired. Mechanisms of Development, 1994, 48, 119-128.	1.7	36
54	Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature, 1993, 365, 448-451.	27.8	109

LESLIE PICK

#	Article	IF	CITATIONS
55	Purification and characterization of wheat germ RNA ligase and associated activities. Methods in Enzymology, 1990, 181, 480-499.	1.0	2
56	A homologous in vitro system to analyze transcription of a mouse immunoglobulin mu heavy-chain gene. FEBS Journal, 1988, 172, 679-685.	0.2	6
57	Tyrosine aminotransferase induced in cells genetically and epigenetically deficient for this enzyme. Developmental Biology, 1982, 92, 275-278.	2.0	0
58	Genetic rescue of lethal genotypes in the mouse. Genesis, 1979, 1, 219-228.	2.1	2