
Nicoletta Corbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3 Genes and Development, 1995, 9, 2635-2645.	2.7	651
2	Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell, 2006, 10, 473-486.	7.7	106
3	Parp1 Localizes within the Dnmt1 Promoter and Protects Its Unmethylated State by Its Enzymatic Activity. PLoS ONE, 2009, 4, e4717.	1.1	97
4	Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell, 2002, 2, 387-399.	7.7	76
5	Nuclear Factor κB-Dependent Histone Acetylation is Specifically Involved in Persistent Forms of Memory. Journal of Neuroscience, 2013, 33, 7603-7614.	1.7	65
6	The artificial zinc finger coding gene â€~Jazz' binds the utrophin promoter and activates transcription. Gene Therapy, 2000, 7, 1076-1083.	2.3	56
7	NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death. Journal of Cell Science, 2007, 120, 1852-1858.	1.2	55
8	Che-1 Arrests Human Colon Carcinoma Cell Proliferation by Displacing HDAC1 from the p21 Promoter. Journal of Biological Chemistry, 2003, 278, 36496-36504.	1.6	46
9	Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice. PLoS ONE, 2007, 2, e774.	1.1	43
10	The αâ€like RNA polymerase II core subunit 3 (RPB3) is involved in tissueâ€specific transcription and muscle differentiation via interaction with the myogenic factor myogenin. FASEB Journal, 2002, 16, 1639-1641.	0.2	35
11	Functional interaction of the subunit 3 of RNA polymerase II (RPB3) with transcription factor-4 (ATF4). FEBS Letters, 2003, 547, 15-19.	1.3	34
12	The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Human Molecular Genetics, 2010, 19, 752-760.	1.4	32
13	Rb binding protein Che-1 interacts with Tau in cerebellar granule neurons. Molecular and Cellular Neurosciences, 2003, 24, 1038-1050.	1.0	31
14	The eEF1Î ³ Subunit Contacts RNA Polymerase II and Binds Vimentin Promoter Region. PLoS ONE, 2010, 5, e14481.	1.1	27
15	Utrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular junction in mdx mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1172-1182.	1.8	26
16	Novel Adenoâ€Associated Viral Vector Delivering the Utrophin Gene Regulator Jazz Counteracts Dystrophic Pathology in mdx Mice. Journal of Cellular Physiology, 2014, 229, 1283-1291.	2.0	25
17	Synthesis of a new zinc finger peptide; comparison of its `code' deduced and `CASTing' derived binding sites. FEBS Letters, 1997, 417, 71-74.	1.3	23
18	Pathways Implicated in Tadalafil Amelioration of Duchenne Muscular Dystrophy. Journal of Cellular Physiology, 2016, 231, 224-232.	2.0	22

NICOLETTA CORBI

#	Article	IF	CITATIONS
19	RNA Polymerase II subunit 3 is retained in the cytoplasm by its interaction with HCR, the psoriasis vulgaris candidate gene product. Journal of Cell Science, 2005, 118, 4253-4260.	1.2	21
20	SMN affects membrane remodelling and anchoring of the protein synthesis machinery. Journal of Cell Science, 2016, 129, 804-16.	1.2	20
21	Binding Properties of the Artificial Zinc Fingers Coding Gene Sint1. Biochemical and Biophysical Research Communications, 1998, 253, 686-692.	1.0	19
22	Synthetic zinc finger peptides: old and novel applications. Biochemistry and Cell Biology, 2004, 82, 428-436.	0.9	19
23	The artificial 4-zinc-finger protein Bagly binds human utrophin promoter A at the endogenous chromosomal site and activates transcription. Biochemistry and Cell Biology, 2007, 85, 358-365.	0.9	15
24	eEF1BÎ ³ binds the Che-1 and TP53 gene promoters and their transcripts. Journal of Experimental and Clinical Cancer Research, 2016, 35, 146.	3.5	15
25	UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation. BMC Molecular Biology, 2013, 14, 3.	3.0	14
26	Hippocampal dynamics of synaptic NF-kappa B during inhibitory avoidance long-term memory consolidation in mice. Neuroscience, 2015, 291, 70-80.	1.1	14
27	Zfp60, a mouse zinc finger gene expressed transiently during in vitro muscle differentiation. FEBS Letters, 1996, 387, 117-121.	1.3	11
28	Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation. Neuromuscular Disorders, 2009, 19, 158-162.	0.3	11
29	Transgenic Mice Expressing an Artificial Zinc Finger Regulator Targeting an Endogenous Gene. Methods in Molecular Biology, 2010, 649, 183-206.	0.4	11
30	Exploring Mitochondrial Localization of SARS-CoV-2 RNA by Padlock Assay: A Pilot Study in Human Placenta. International Journal of Molecular Sciences, 2022, 23, 2100.	1.8	10
31	The RNA polymerase II core subunit 11 interacts with keratin 19, a component of the intermediate filament proteins. FEBS Letters, 1999, 453, 273-277.	1.3	9
32	The artificial zinc finger protein â€~Blues' binds the enhancer of the fibroblast growth factor 4 and represses transcription. FEBS Letters, 2004, 560, 75-80.	1.3	7
33	Enriched Environment Cues Suggest a New Strategy to Counteract Glioma: Engineered rAAV2-IL-15 Microglia Modulate the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 730128.	2.2	7
34	Fine-Tuning of mTOR mRNA and Nucleolin Complexes by SMN. Cells, 2021, 10, 3015.	1.8	7
35	Che-1 enhances cyclin-dependent kinase 5 expression and interacts with the active kinase-complex. NeuroReport, 2008, 19, 531-535.	0.6	4
36	Identification of protein/mRNA network involving the PSORS1 locus gene CCHCR1 and the PSORS4 locus gene HAX1. Experimental Cell Research, 2021, 399, 112471.	1.2	4

#	Article	IF	CITATIONS
37	Synthetic Zinc Finger Transcription Factors. , 2005, , 47-55.		0
38	Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence. Neuroscience Letters, 2016, 632, 169-174.	1.0	0