
Deshan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loading CuFe2O4 onto ceramic fabric for photocatalytic degradation of methylene blue under visible light irradiation. Ceramics International, 2022, 48, 1256-1263.	4.8	13
2	Durable, Lightweight, Washable and Comfortable Cooling Textiles from Nanodiamond/Polydopamine/Wool Nanocomposites. Macromolecular Materials and Engineering, 2022, 307, .	3.6	4
3	In situ growth of MnO2 on pDA-templated cotton fabric for degradation of formaldehyde. Cellulose, 2022, 29, 7353-7363.	4.9	9
4	Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews, 2021, 10, 221-236.	5.8	22
5	Polydopamine-induced in-situ growth of zeolitic imidazolate framework-8/TiO2 nanoparticles on cotton fabrics for photocatalytic performance. Progress in Organic Coatings, 2021, 152, 106123.	3.9	27
6	WPU/Cu2-XSe coated cotton fabrics for photothermal conversion and photochromic applications. Cellulose, 2021, 28, 6727.	4.9	10
7	Polydopamine-assisted in situ growth of three-dimensional ZnO/Ag nanocomposites on PET films for SERS and catalytic properties. Journal of Molecular Liquids, 2021, 338, 116639.	4.9	14
8	Large-scale production of weavable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106520.	7.6	32
9	In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors. Ionics, 2021, 27, 279-288.	2.4	17
10	In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing. Chemical Engineering Journal, 2020, 382, 123036.	12.7	63
11	Highly robust and durable core-sheath nanocomposite yarns for electro-thermochromic performance application. Chemical Engineering Journal, 2020, 384, 123376.	12.7	24
12	Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn. Composites Part B: Engineering, 2020, 183, 107683.	12.0	38
13	One-step in-situ growth of zeolitic imidazole frameworks-8 on cotton fabrics for photocatalysis and antimicrobial activity. Cellulose, 2020, 27, 10447-10459.	4.9	48
14	Polydopamine-assisted deposition of CuS nanoparticles on cotton fabrics for photocatalytic and photothermal conversion performance. Cellulose, 2020, 27, 8443-8455.	4.9	27
15	Mussel-inspired synthesis of filter cotton-based AgNPs for oil/water separation, antibacterial and catalytic application. Materials Today Communications, 2020, 25, 101467.	1.9	8
16	Highly Stretchable Sheath–Core Yarns for Multifunctional Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 29717-29727.	8.0	20
17	Mussel-inspired fabrication of superhydrophobic cotton fabric for oil/water separation and visible light photocatalytic. Cellulose, 2020, 27, 5421-5433.	4.9	35
18	Immobilizing CuO/BiVO4 nanocomposite on PDA-templated cotton fabric for visible light photocatalysis, antimicrobial activity and UV protection. Applied Surface Science, 2019, 493, 1167-1176.	6.1	62

DESHAN CHENG

#	Article	IF	CITATIONS
19	Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications. Cellulose, 2019, 26, 7569-7579.	4.9	62
20	Stretchable and Highly Sensitive Braided Composite Yarn@Polydopamine@Polypyrrole for Wearable Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 7338-7348.	8.0	88
21	Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose, 2019, 26, 6179-6188.	4.9	71
22	Core–shell BiVO4@PDA composite photocatalysts on cotton fabrics for highly efficient photodegradation under visible light. Cellulose, 2019, 26, 6259-6273.	4.9	36
23	CNT/cotton composite yarn for electro-thermochromic textiles. Smart Materials and Structures, 2019, 28, 085003.	3.5	23
24	Polydopamine-assisted immobilization of Ag@AuNPs on cotton fabrics for sensitive and responsive SERS detection. Cellulose, 2019, 26, 4191-4204.	4.9	36
25	Hydrothermal growing of cluster-like ZnO nanoparticles without crystal seeding on PET films via dopamine anchor. Applied Surface Science, 2019, 467-468, 534-542.	6.1	32
26	In situ reduction of TiO2 nanoparticles on cotton fabrics through polydopamine templates for photocatalysis and UV protection. Cellulose, 2018, 25, 1413-1424.	4.9	65
27	Durable UV-protective cotton fabric by deposition of multilayer TiO2 nanoparticles films on the surface. Journal of Coatings Technology Research, 2018, 15, 603-610.	2.5	14
28	Large-Scale Production of Highly Stretchable CNT/Cotton/Spandex Composite Yarn for Wearable Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 32726-32735.	8.0	96
29	Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sensors and Actuators B: Chemical, 2018, 270, 508-517.	7.8	83
30	Conductive Cotton Fabrics for Motion Sensing and Heating Applications. Polymers, 2018, 10, 568.	4.5	76
31	Growing ZnO Nanoparticles on Polydopamine-Templated Cotton Fabrics for Durable Antimicrobial Activity and UV Protection. Polymers, 2018, 10, 495.	4.5	46
32	Conductive and durable CNT-cotton ring spun yarns. Cellulose, 2018, 25, 4239-4249.	4.9	28
33	UV protective PET nanocomposites by a layer-by-layer deposition of TiO2 nanoparticles. Colloid and Polymer Science, 2017, 295, 2163-2172.	2.1	15
34	Surface Characterisation of Polyelectrolyte/Silver Nanocomposite Films. Polymers and Polymer Composites, 2017, 25, 635-642.	1.9	5