M T Lemmon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4552078/publications.pdf Version: 2024-02-01

MTLEMMON

#	Article	IF	CITATIONS
1	Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover. Sensors, 2022, 22, 2907.	2.1	18
2	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	4.7	47
3	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 2: Local Meteorology, Transport Dynamics, and Model Analysis. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006514.	1.5	19
4	Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. Space Science Reviews, 2021, 217, 29.	3.7	31
5	The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Science Reviews, 2021, 217, 24.	3.7	76
6	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 4. Final mission observations. Icarus, 2021, 357, 114261.	1.1	10
7	The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.	3.7	57
8	Pluto's Haze Abundance and Size Distribution from Limb Scatter Observations by MVIC. Planetary Science Journal, 2021, 2, 91.	1.5	5
9	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 1: Multiâ€Instrument Observations, Analysis, and Implications. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006757.	1.5	23
10	Near Surface Properties of Martian Regolith Derived From InSight HP ³ â€RAD Temperature Observations During Phobos Transits. Geophysical Research Letters, 2021, 48, e2021GL093542.	1.5	13
11	Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006859.	1.5	22
12	First Mars year of observations with the InSight solar arrays: Winds, dust devil shadows, and dust accumulation. Icarus, 2021, 364, 114468.	1.1	15
13	The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006804.	1.5	16
14	A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Halfâ€aâ€Year of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	45
15	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	1.8	13
16	Thermal Forcing of the Nocturnal Near Surface Environment by Martian Water Ice Clouds. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	3
17	Spectrophotometry from Mars Hand Lens Imager goniometer measurements: Kimberley region, Gale crater. Icarus, 2020, 335, 113361.	1.1	5
18	Estimating the altitudes of Martian water-ice clouds above the Mars Science Laboratory rover landing site. Planetary and Space Science, 2020, 182, 104785.	0.9	9

#	Article	IF	CITATIONS
19	Dust cover on Curiosity's Mars Hand Lens Imager (MAHLI) calibration target: Implications for deposition and removal mechanisms. Icarus, 2020, 351, 113872.	1.1	15
20	Geophysical Observations of Phobos Transits by InSight. Geophysical Research Letters, 2020, 47, e2020GL089099.	1.5	10
21	In Situ UV Measurements by MSL/REMS: Dust Deposition and Angular Response Corrections. Space Science Reviews, 2020, 216, 1.	3.7	17
22	The Lineâ€of‣ight Extinction Record at Gale Crater as Observed by MSL's Mastcam and Navcam through ⰼ2,500 Sols. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006465.	1.5	3
23	Effects of a Large Dust Storm in the Nearâ€Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006493.	1.5	30
24	Scientific Observations With the InSight Solar Arrays: Dust, Clouds, and Eclipses on Mars. Earth and Space Science, 2020, 7, e2019EA000992.	1.1	24
25	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	5.4	161
26	Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site. Icarus, 2020, 343, 113624.	1.1	11
27	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	5.4	274
28	A Transit Lightcurve of Deimos, Observed with the InSight Solar Arrays. Research Notes of the AAS, 2020, 4, 57.	0.3	1
29	Visibility and Lineâ€ofâ€Sight Extinction Estimates in Gale Crater During the 2018/MY34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 9414-9421.	1.5	13
30	Effects of the MY34/2018 Global Dust Storm as Measured by MSL REMS in Gale Crater. Journal of Geophysical Research E: Planets, 2019, 124, 1899-1912.	1.5	40
31	MarsWRF Convective Vortex and Dust Devil Predictions for Gale Crater Over 3 Mars Years and Comparison With MSLâ€REMS Observations. Journal of Geophysical Research E: Planets, 2019, 124, 3442-3468.	1.5	41
32	Large Dust Aerosol Sizes Seen During the 2018 Martian Global Dust Event by the Curiosity Rover. Geophysical Research Letters, 2019, 46, 9448-9456.	1.5	58
33	Vertical and horizontal heterogeneity of atmospheric dust loading in northern Gale Crater, Mars. Icarus, 2019, 329, 197-206.	1.1	6
34	Compositional and Mineralogic Analyses of Mars Using Multispectral Imaging on the Mars Exploration Rover, Phoenix, and Mars Science Laboratory Missions. , 2019, , 513-537.		3
35	Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 71-79.	1.5	138
36	Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 2018, 307, 294-326.	1.1	39

#	Article	IF	CITATIONS
37	Wave energetics of the southern hemisphere of Mars. Icarus, 2018, 309, 220-240.	1.1	13
38	Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover. Scientific Reports, 2018, 8, 17576.	1.6	36
39	Impact-Seismic Investigations of the InSight Mission. Space Science Reviews, 2018, 214, 1.	3.7	48
40	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	3.7	88
41	The Color Cameras on the InSight Lander. Space Science Reviews, 2018, 214, 1.	3.7	50
42	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	6.0	224
43	Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 2017, 284, 372-386.	1.1	74
44	The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity. Space Science Reviews, 2017, 212, 295-338.	3.7	153
45	The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions. Earth and Space Science, 2017, 4, 506-539.	1.1	117
46	Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements. Geophysical Research Letters, 2017, 44, 3502-3508.	1.5	34
47	History of Mars Atmosphere Observations. , 2017, , 20-41.		4
48	The Mars Dust Cycle. , 2017, , 295-337.		70
49	The Mars Science Laboratory <i>Curiosity</i> rover Mastcam instruments: Preflight and inâ€flight calibration, validation, and data archiving. Earth and Space Science, 2017, 4, 396-452.	1.1	113
50	Orbital Observations of Dust Lofted by Daytime Convective Turbulence. Space Sciences Series of ISSI, 2017, , 89-142.	0.0	0
51	Field Measurements of Terrestrial and Martian Dust Devils. Space Sciences Series of ISSI, 2017, , 39-87.	0.0	1
52	Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Sciences Series of ISSI, 2017, , 377-426.	0.0	1
53	Análisis de las condiciones ambientales en el cráter Gale a partir de mediciones REMS/MSL. FÃsica De La Tierra, 2016, 28, .	0.1	2
54	Variabilidad estacional e interanual de la radiación solar en las coordenadas de aterrizaje de Spirit, Opportunity y Curiosity. FÃsica De La Tierra, 2016, 28, .	0.1	5

#	Article	IF	CITATIONS
55	Convective vortices and dust devils at the MSL landing site: Annual variability. Journal of Geophysical Research E: Planets, 2016, 121, 1514-1549.	1.5	55
56	Energetics of the martian atmosphere using the Mars Analysis Correction Data Assimilation (MACDA) dataset. Icarus, 2016, 276, 1-20.	1.1	15
57	Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes. Icarus, 2016, 280, 234-248.	1.1	48
58	Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid. Advances in Space Research, 2016, 58, 1066-1092.	1.2	12
59	Interannual perturbations of the Martian surface heat flow by atmospheric dust opacity variations. Journal of Geophysical Research E: Planets, 2016, 121, 2166-2175.	1.5	14
60	Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Science Reviews, 2016, 203, 377-426.	3.7	35
61	Field Measurements of Terrestrial and Martian Dust Devils. Space Science Reviews, 2016, 203, 39-87.	3.7	39
62	Orbital Observations of Dust Lofted by Daytime Convective Turbulence. Space Science Reviews, 2016, 203, 89-142.	3.7	35
63	Titan Science with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018007.	1.0	19
64	Atmospheric tides in Gale Crater, Mars. Icarus, 2016, 268, 37-49.	1.1	45
65	The first Martian year of cloud activity from Mars Science Laboratory (sol 0–800). Advances in Space Research, 2016, 57, 1223-1240.	1.2	20
66	A full martian year of line-of-sight extinction within Gale Crater, Mars as acquired by the MSL Navcam through sol 900. Icarus, 2016, 264, 102-108.	1.1	29
67	A solar escalator on Mars: Selfâ€lifting of dust layers by radiative heating. Geophysical Research Letters, 2015, 42, 7319-7326.	1.5	38
68	Martian airfall dust on smooth, inclined surfaces as observed on the Phoenix Mars Lander telltale mirror. Planetary and Space Science, 2015, 116, 6-17.	0.9	7
69	Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus, 2015, 249, 129-142.	1.1	66
70	Eight-year climatology of dust optical depth on Mars. Icarus, 2015, 251, 65-95.	1.1	316
71	Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Advances in Space Research, 2015, 55, 2217-2238.	1.2	28
72	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	3.3	172

#	Article	IF	CITATIONS
73	Mars methane detection and variability at Gale crater. Science, 2015, 347, 415-417.	6.0	373
74	The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science, 2015, 347, 412-414.	6.0	113
75	Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 2015, 251, 96-111.	1.1	158
76	ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 2015, 249, 74-92.	1.1	70
77	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 3. Sols 500–1525. Icarus, 2015, 248, 25-71.	1.1	12
78	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	6.0	323
79	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	6.0	687
80	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	6.0	508
81	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	6.0	475
82	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	6.0	224
83	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	6.0	246
84	Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. Journal of Geophysical Research E: Planets, 2014, 119, 440-453.	1.5	80
85	Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research E: Planets, 2014, 119, 745-770.	1.5	67
86	Pressure observations by the Curiosity rover: Initial results. Journal of Geophysical Research E: Planets, 2014, 119, 82-92.	1.5	84
87	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	6.0	327
88	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	6.0	280
89	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	6.0	327
90	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	6.0	367

#	Article	IF	CITATIONS
91	Isotope Ratios of H, C, and O in CO ₂ and H ₂ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	6.0	241
92	Phoenix LIDAR measurements of Mars atmospheric dust. Icarus, 2013, 223, 649-653.	1.1	24
93	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	6.0	326
94	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	6.0	134
95	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	6.0	215
96	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	6.0	103
97	Curiosity's Mars Hand Lens Imager (MAHLI) Investigation. Space Science Reviews, 2012, 170, 259-317.	3.7	185
98	Curiosity's Mars Hand Lens Imager (MAHLI) Investigation. , 2012, , 259-317.		0
99	Observations of near-surface fog at the Phoenix Mars landing site. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	20
100	Explosive erosion during the Phoenix landing exposes subsurface water on Mars. Icarus, 2011, 211, 172-194.	1.1	51
101	Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager. Journal of Geophysical Research, 2010, 115, .	3.3	31
102	Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations. Journal of Geophysical Research, 2010, 115, .	3.3	15
103	Winds at the Phoenix landing site. Journal of Geophysical Research, 2010, 115, .	3.3	89
104	Convective vortices and dust devils at the Phoenix Mars mission landing site. Journal of Geophysical Research, 2010, 115, .	3.3	118
105	In situ analysis of ice table depth variations in the vicinity of small rocks at the Phoenix landing site. Journal of Geophysical Research, 2010, 115, .	3.3	22
106	Phoenix and MRO coordinated atmospheric measurements. Journal of Geophysical Research, 2010, 115, .	3.3	40
107	Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site. Journal of Geophysical Research, 2010, 115, .	3.3	25
108	Habitability of the Phoenix landing site. Journal of Geophysical Research, 2010, 115, .	3.3	82

#	Article	IF	CITATIONS
109	Lidar measurements of clouds in the planetary boundary layer on Mars. Geophysical Research Letters, 2010, 37, .	1.5	18
110	Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 2010, 37, .	1.5	92
111	Gusev Crater, Mars: Observations of three dust devil seasons. Journal of Geophysical Research, 2010, 115, .	3.3	86
112	H ₂ O at the Phoenix Landing Site. Science, 2009, 325, 58-61.	6.0	500
113	Mars Water-Ice Clouds and Precipitation. Science, 2009, 325, 68-70.	6.0	173
114	The periglacial landscape at the Phoenix landing site. Journal of Geophysical Research, 2009, 114, .	3.3	61
115	Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. Journal of Geophysical Research, 2009, 114, .	3.3	137
116	Results from the Mars Phoenix Lander Robotic Arm experiment. Journal of Geophysical Research, 2009, 114, .	3.3	97
117	Ground ice at the Phoenix Landing Site: Stability state and origin. Journal of Geophysical Research, 2009, 114, .	3.3	167
118	Phoenix soil physical properties investigation. Journal of Geophysical Research, 2009, 114, .	3.3	25
119	Ground ice at the Phoenix Landing Site: Stability state and origin. , 2009, .		1
120	Automatic detection of dust devils and clouds on Mars. Machine Vision and Applications, 2008, 19, 467-482.	1.7	55
121	A model of Titan's aerosols based on measurements made inside the atmosphere. Planetary and Space Science, 2008, 56, 669-707.	0.9	249
122	Telltale wind indicator for the Mars Phoenix lander. Journal of Geophysical Research, 2008, 113, .	3.3	27
123	Magnetic properties experiments and the Surface Stereo Imager calibration target onboard the Mars Phoenix 2007 Lander: Design, calibration, and science goals. Journal of Geophysical Research, 2008, 113,	3.3	17
124	Phoenix Robotic Arm Camera. Journal of Geophysical Research, 2008, 113, .	3.3	23
125	Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science. Journal of Geophysical Research, 2008, 113, .	3.3	95
126	Measurement of the meteoroid flux at Mars. Icarus, 2007, 191, 141-150.	1.1	23

8

#	Article	IF	CITATIONS
127	Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	149
128	In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	112
129	Gusev crater: Wind-related features and processes observed by the Mars Exploration Rover Spirit. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	140
130	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	49
131	Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	238
132	Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	64
133	Huygens entry emission: Observation campaign, results, and lessons learned. Journal of Geophysical Research, 2006, 111, .	3.3	4
134	Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	133
135	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	36
136	Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	159
137	Seasonal evolution of Titan's dark polar hood: midsummer disappearance observed by the Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1683-1687.	1.6	15
138	Autonomous Detection of Dust Devils and Clouds on Mars. , 2006, , .		10
139	Solar eclipses of Phobos and Deimos observed from the surface of Mars. Nature, 2005, 436, 55-57.	13.7	29
140	A martian meteor and its parent comet. Nature, 2005, 435, 581-581.	13.7	22
141	Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 2005, 438, 765-778.	13.7	529
142	Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 2004, 306, 1753-1756.	6.0	219
143	Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater. Science, 2004, 305, 800-806.	6.0	153
144	Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum. Science, 2004, 306, 1703-1709	6.0	135

#	Article	IF	CITATIONS
145	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	6.0	404
146	The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars. Science, 2004, 306, 1698-1703.	6.0	507
147	First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES. Science, 2004, 306, 1750-1753.	6.0	102
148	Seasonal change in Titan's haze 1992-2002 from Hubble Space Telescope observations. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	26
149	The Spirit Rover's Athena science investigation at Gusev Crater, Mars. Science, 2004, 305, 794-9.	6.0	27
150	Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra. Icarus, 2003, 163, 330-346.	1.1	63
151	Inverse radiation modeling of Titan's atmosphere to assimilate solar aureole imager data of the Huygens probe. Planetary and Space Science, 2003, 51, 147-158.	0.9	8
152	Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. Journal of Geophysical Research, 2003, 108, .	3.3	247
153	Dust devils as observed by Mars Pathfinder. Journal of Geophysical Research, 2003, 108, .	3.3	105
154	The Surface and Lower Atmosphere of Titan from HST Observations. Highlights of Astronomy, 2002, 12, 625-625.	0.0	2
155	Variable and Constant Features on Titan from HST. Highlights of Astronomy, 2002, 12, 650-650.	0.0	0
156	Methane Abundance on Titan, Measured by the Space Telescope Imaging Spectrograph. Icarus, 2002, 160, 375-385.	1.1	29
157	The MVACS Surface Stereo Imager on Mars Polar Lander. Journal of Geophysical Research, 2001, 106, 17589-17607.	3.3	15
158	The MVACS Robotic Arm Camera. Journal of Geophysical Research, 2001, 106, 17609-17621.	3.3	16
159	The 1999 Marsokhod rover mission simulation at Silver Lake, California: Mission overview, data sets, and summary of results. Journal of Geophysical Research, 2001, 106, 7639-7663.	3.3	30
160	DIRTCam in the desert: The Silver Lake field test of the Robotic Arm Camera. Journal of Geophysical Research, 2001, 106, 7721-7732.	3.3	4
161	Titan's smile and collar: HST Observations of seasonal change 1994-2000. Geophysical Research Letters, 2001, 28, 4453-4456.	1.5	47
162	Physical properties of the organic aerosols and clouds on Titan. Planetary and Space Science, 2001, 49, 79-99.	0.9	151

#	Article	IF	CITATIONS
163	On the optical studies of the atmospheric water vapour from the surface of Mars. Planetary and Space Science, 2000, 48, 1423-1427.	0.9	2
164	Techniques for identifying dust devils in Mars Pathfinder images. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 870-876.	2.7	13
165	Imager for Mars Pathfinder (IMP) image calibration. Journal of Geophysical Research, 1999, 104, 8907-8925.	3.3	75
166	Seasonal Change on Titan Observed with the Hubble Space Telescope WFPC-2. Icarus, 1999, 142, 391-401.	1.1	57
167	Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars. Journal of Geophysical Research, 1999, 104, 8809-8830.	3.3	71
168	Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results. Journal of Geophysical Research, 1999, 104, 8523-8553.	3.3	121
169	Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. Journal of Geophysical Research, 1999, 104, 8987-9007.	3.3	286
170	Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. Journal of Geophysical Research, 1999, 104, 8975-8985.	3.3	131
171	Measurements of the atmospheric water vapor on Mars by the Imager for Mars Pathfinder. Journal of Geophysical Research, 1999, 104, 9019-9026.	3.3	51
172	Dust devil vortices seen by the Mars Pathfinder Camera. Geophysical Research Letters, 1999, 26, 2781-2784.	1.5	152
173	Galileo probe measurements of thermal and solar radiation fluxes in the Jovian atmosphere. Journal of Geophysical Research, 1998, 103, 22929-22977.	3.3	83
174	Results from the Mars Pathfinder Camera. Science, 1997, 278, 1758-1765.	6.0	242
175	Titan's North–South Asymmetry from HST and Voyager Imaging: Comparison with Models and Ground-Based Photometry. Icarus, 1997, 127, 173-189.	1.1	55
176	Solar and Thermal Radiation in Jupiter's Atmosphere: Initial Results of the Galileo Probe Net Flux Radiometer. Science, 1996, 272, 851-854.	6.0	43
177	Titan's Surface, Revealed by HST Imaging. Icarus, 1996, 119, 336-349.	1.1	235
178	Titan's Rotational Light-Curve. Icarus, 1995, 113, 27-38.	1.1	65
179	Titan's Rotation: Surface Feature Observed. Icarus, 1993, 103, 329-332.	1.1	89