Matteo Pasquali

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/455205/matteo-pasquali-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

212	12,737	59	108
papers	citations	h-index	g-index
232 ext. papers	14,209 ext. citations	8.2 avg, IF	6.23 L-index

#	Paper	IF	Citations
212	Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence <i>Science Advances</i> , 2022 , 8, eabn0939	14.3	3
211	Versatile acid solvents for pristine carbon nanotube assembly Science Advances, 2022, 8, eabm3285	14.3	3
210	Liquid crystals of neat boron nitride nanotubes and their assembly into ordered macroscopic materials. <i>Nature Communications</i> , 2022 , 13,	17.4	3
209	Strongly anisotropic field emission from highly aligned carbon nanotube films. <i>Journal of Applied Physics</i> , 2021 , 129, 125103	2.5	6
208	Substrate-Versatile Direct-Write Printing of Carbon Nanotube-Based Flexible Conductors, Circuits, and Sensors. <i>Advanced Functional Materials</i> , 2021 , 31, 2100245	15.6	8
207	Flexible Electronics: Substrate-Versatile Direct-Write Printing of Carbon Nanotube-Based Flexible Conductors, Circuits, and Sensors (Adv. Funct. Mater. 25/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170181	15.6	1
206	Biocompatibility studies of macroscopic fibers made from carbon nanotubes: Implications for carbon nanotube macrostructures in biomedical applications. <i>Carbon</i> , 2021 , 173, 462-476	10.4	13
205	Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers. <i>Carbon</i> , 2021 , 171, 689-694	10.4	47
204	Enhanced ordering in length-polydisperse carbon nanotube solutions at high concentrations as revealed by small angle X-ray scattering. <i>Soft Matter</i> , 2021 , 17, 5122-5130	3.6	2
203	Opinion: We can use carbon to decarbonize-and get hydrogen for free. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
202	Washable, Sewable, All-Carbon Electrodes and Signal Wires for Electronic Clothing. <i>Nano Letters</i> , 2021 , 21, 7093-7099	11.5	6
201	Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. <i>Nature Communications</i> , 2021 , 12, 4931	17.4	18
200	Understanding the Exfoliation and Dispersion of Hexagonal Boron Nitride Nanosheets by Surfactants: Implications for Antibacterial and Thermally Resistant Coatings. <i>ACS Applied Nano Materials</i> , 2021 , 4, 142-151	5.6	6
199	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. <i>JPhys Materials</i> , 2020 , 3, 034009	4.2	20
198	PEDOT assisted CNT self-supported electrodes for high energy and power density. <i>Electrochimica Acta</i> , 2020 , 349, 136418	6.7	3
197	Real-Time Visualization and Dynamics of Boron Nitride Nanotubes Undergoing Brownian Motion. Journal of Physical Chemistry B, 2020 , 124, 4185-4192	3.4	4
196	Couette flows of a thixotropic yield-stress material: Performance of a novel fluidity-based constitutive model. <i>Journal of Rheology</i> , 2020 , 64, 889-898	4.1	3

Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406290 195 Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature 194 28.7 40 Nanotechnology, **2020**, 15, 164-166 Perovskite-Carbon Nanotube Light-Emitting Fibers. Nano Letters, 2020, 20, 3178-3184 8 193 11.5 Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, 192 optoelectronics, and thermoelectrics. Journal Physics D: Applied Physics, 2020, 53, 063001 Effect of Carbon Nanotube Diameter and Stiffness on Their Phase Behavior in Crowded Solutions. 191 4 3 Langmuir, 2020, 36, 242-249 Fluorescent surfactants from common dyes Rhodamine B and Eosin Y. Pure and Applied Chemistry, 190 2.1 2 **2020**, 92, 265-274 Surfactant-assisted individualization and dispersion of boron nitride nanotubes. Nanoscale 189 5.1 24 Advances, **2019**, 1, 1096-1103 Carbon nanotube thin film patch antennas for wireless communications. Applied Physics Letters, 188 17 3.4 2019, 114, 203102 Self-Sorting of 10-Im-Long Single-Walled Carbon Nanotubes in Aqueous Solution. Advanced 187 24 4 Materials, 2019, 31, e1901641 Polyimide Aerogels as Lightweight Dielectric Insulators for Carbon Nanotube Cables. ACS Applied 186 4.3 Polymer Materials, 2019, 1, 1680-1688 Dynamic Strengthening of Carbon Nanotube Fibers under Extreme Mechanical Impulses. Nano 185 11.5 20 Letters, 2019, 19, 3519-3526 Carbon Nanotube Fiber Field Emission Array Cathodes. IEEE Transactions on Plasma Science, 2019, 184 1.3 47, 2032-2038 Adverse Effect of PTFE Stir Bars on the Covalent Functionalization of Carbon and Boron Nitride 183 3.9 5 Nanotubes Using Billups-Birch Reduction Conditions. ACS Omega, 2019, 4, 5098-5106 Scalable Purification of Boron Nitride Nanotubes via Wet Thermal Etching. Chemistry of Materials, 182 9.6 21 2019, 31, 1520-1527

177	Stability of Chemically Doped NanotubeBilicon Heterojunction Solar Cells: Role of Oxides at the CarbonBilicon Interface. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5925-5932	6.1	9
176	The effective tensile and bending stiffness of nanotube fibers. <i>International Journal of Mechanical Sciences</i> , 2019 , 163, 105089	5.5	3
175	All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. <i>Journal of Power Sources</i> , 2019 , 417, 125-131	8.9	22
174	Electrical and acoustic vibroscopic measurements for determining carbon nanotube fiber linear density. <i>Carbon</i> , 2019 , 144, 417-422	10.4	7
173	Bright and Ultrafast Photoelectron Emission from Aligned Single-Wall Carbon Nanotubes through Multiphoton Exciton Resonance. <i>Nano Letters</i> , 2019 , 19, 158-164	11.5	8
172	Highly Concentrated Aqueous Dispersions of Carbon Nanotubes for Flexible and Conductive Fibers. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 3554-3560	3.9	10
171	Extraction of Boron Nitride Nanotubes and Fabrication of Macroscopic Articles Using Chlorosulfonic Acid. <i>Nano Letters</i> , 2018 , 18, 1615-1619	11.5	16
170	Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning. <i>Chemical Physics Letters</i> , 2018 , 693, 146-151	2.5	39
169	Structure-Property Relations in Carbon Nanotube Fibers by Downscaling Solution Processing. <i>Advanced Materials</i> , 2018 , 30, 1704482	24	69
168	Directional sensing based on flexible aligned carbon nanotube film nanocomposites. <i>Nanoscale</i> , 2018 , 10, 14938-14946	7.7	31
167	Aligned-SWCNT film laminated nanocomposites: Role of the film on mechanical and electrical properties. <i>Carbon</i> , 2018 , 139, 680-687	10.4	19
166	Bending behavior of CNT fibers and their scaling laws. <i>Soft Matter</i> , 2018 , 14, 8284-8292	3.6	14
165	Carbon nanotube woven textile photodetector. <i>Physical Review Materials</i> , 2018 , 2,	3.2	22
164	Fluidic Microactuation of Flexible Electrodes for Neural Recording. <i>Nano Letters</i> , 2018 , 18, 326-335	11.5	61
163	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. <i>ACS Nano</i> , 2018 , 12, 11756-11784	16.7	239
162	Quantification of Carbon Nanotube Liquid Crystal Morphology via Neutron Scattering. <i>Macromolecules</i> , 2018 , 51, 6892-6900	5.5	5
161	Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2421-2429	5.6	13
160	Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 1407-1416	2.6	8

(2016-2017)

159	A micro-scale printable nanoclip for electrical stimulation and recording in small nerves. <i>Journal of Neural Engineering</i> , 2017 , 14, 036006	5	41	
158	Direct Imaging of Carbon Nanotube Liquid-Crystalline Phase Development in True Solutions. <i>Langmuir</i> , 2017 , 33, 4011-4018	4	20	
157	Increased solubility and fiber spinning of graphenide dispersions aided by crown-ethers. <i>Chemical Communications</i> , 2017 , 53, 1498-1501	5.8	5	
156	Purification and Dissolution of Carbon Nanotube Fibers Spun from the Floating Catalyst Method. <i>ACS Applied Materials & Discounty of Carbon Nanotube Fibers Spun from the Floating Catalyst Method.</i>	9.5	38	
155	High efficiency carbon nanotube thread antennas. <i>Applied Physics Letters</i> , 2017 , 111, 163109	3.4	25	
154	Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 36189-36198	9.5	114	
153	Line Tension of Twist-Free Carbon Nanotube Lyotropic Liquid Crystal Microdroplets on Solid Surfaces. <i>Langmuir</i> , 2017 , 33, 9115-9121	4	2	
152	Dissolution and Characterization of Boron Nitride Nanotubes in Superacid. <i>Langmuir</i> , 2017 , 33, 14340-	14346	17	
151	Pulsed black-body emitter based on current-driven carbon nanotube fibers 2017,		1	
150	Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes. <i>Physical Review Materials</i> , 2017 , 1,	3.2	19	
149	DNA sequencing by nanopores: advances and challenges. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 413001	3	27	
148	Enlightening the ultrahigh electrical conductivities of doped double-wall carbon nanotube fibers by Raman spectroscopy and first-principles calculations. <i>Nanoscale</i> , 2016 , 8, 19668-19676	7.7	13	
147	Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating. <i>ACS Applied Materials & Distributed & D</i>	9.5	30	
146	Impact of SWCNT processing on nanotube-silicon heterojunctions. <i>Nanoscale</i> , 2016 , 8, 7969-77	7.7	26	
145	High-performance graphene-based supercapacitors made by a scalable blade-coating approach. <i>Nanotechnology</i> , 2016 , 27, 165402	3.4	14	
144	Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant-free dip coating. <i>Sensors and Actuators B: Chemical</i> , 2016 , 227, 128-134	8.5	46	
143	Relationship of Extensional Viscosity and Liquid Crystalline Transition to Length Distribution in Carbon Nanotube Solutions. <i>Macromolecules</i> , 2016 , 49, 681-689	5.5	46	
142	Carbon nanotube fiber terahertz polarizer. <i>Applied Physics Letters</i> , 2016 , 108, 141107	3.4	29	

141	The effect of shear-thickening on liquid transfer from an idealized gravure cell. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2015 , 221, 55-65	2.7	16
140	Experimental realization of crossover in shape and director field of nematic tactoids. <i>Physical Review E</i> , 2015 , 91, 042507	2.4	46
139	A New Stabilization of Adaptive Step Trapezoid Rule Based on Finite Difference Interrupts. <i>SIAM Journal of Scientific Computing</i> , 2015 , 37, A725-A746	2.6	3
138	Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. <i>ACS Nano</i> , 2015 , 9, 4465-74	16.7	194
137	High performance solid-state supercapacitors based on compressed graphene foam. <i>RSC Advances</i> , 2015 , 5, 84836-84839	3.7	14
136	Theoretical analysis of selectivity mechanisms in molecular transport through channels and nanopores. <i>Journal of Chemical Physics</i> , 2015 , 142, 044705	3.9	12
135	Ultrabroadband, Lightweight, Flexible, and Polarization Sensitive Photodetector Based on Carbon Nanotube Fibers 2015 ,		1
134	High performance all-carbon thin film supercapacitors. <i>Journal of Power Sources</i> , 2015 , 274, 823-830	8.9	47
133	Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing. <i>Scientific Reports</i> , 2015 , 5, 17019	4.9	13
132	Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. <i>Journal of Microscopy</i> , 2015 , 259, 16-25	1.9	13
131	Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes. <i>Langmuir</i> , 2015 , 31, 5928-34	4	21
130	Three-dimensional patterning of solid microstructures through laser reduction of colloidal graphene oxide in liquid-crystalline dispersions. <i>Nature Communications</i> , 2015 , 6, 7157	17.4	47
129	Morphology dependent field emission of acid-spun carbon nanotube fibers. <i>Nanotechnology</i> , 2015 , 26, 105706	3.4	27
128	Electrochemical growth of nickel nanoparticles on carbon nanotubes fibers: Kinetic modeling and implications for an easy to handle platform for gas sensing device. <i>Electrochimica Acta</i> , 2015 , 157, 115-	1247	11
127	Stabilization and functionalization of single-walled carbon nanotubes with polyvinylpyrrolidone copolymers for applications in aqueous media. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 337-343	2.5	7
126	Assessment of length and bundle distribution of dilute single-walled carbon nanotubes by viscosity measurements. <i>AICHE Journal</i> , 2014 , 60, 1499-1508	3.6	14
125	High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2014 , 24, 3241-3249	15.6	87
124	A multiscale, biophysical model of flow-induced red blood cell damage. <i>AICHE Journal</i> , 2014 , 60, 1509-1	531 6	28

123	High-resolution mapping of intracellular fluctuations using carbon nanotubes. <i>Science</i> , 2014 , 344, 1031	-533.3	152
122	Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes. <i>ACS Nano</i> , 2014 , 8, 9107-12	16.7	69
121	Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector. <i>Nanotechnology</i> , 2014 , 25, 435405	3.4	46
120	Statistical length measurement method by direct imaging of carbon nanotubes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 6139-46	9.5	11
119	Superconductive niobium films coating carbon nanotube fibers. <i>Superconductor Science and Technology</i> , 2014 , 27, 115006	3.1	6
118	Synthesis and Crystal Structure of Gold Nanobelts. <i>Chemistry of Materials</i> , 2014 , 26, 1999-2004	9.6	14
117	Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. <i>ACS Nano</i> , 2014 , 8, 9822-32	16.7	149
116	Stress transfer in polyacrylonitrile/carbon nanotube composite fibers. <i>Polymer</i> , 2014 , 55, 2734-2743	3.9	47
115	Carbon Nanofibers: High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes (Adv. Funct. Mater. 21/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 3288-3288	15.6	
114	Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. <i>Advanced Materials</i> , 2013 , 25, 4592-7	24	158
113	Covalently interconnected three-dimensional graphene oxide solids. ACS Nano, 2013, 7, 7034-40	16.7	204
112	Computational study of viscoelastic effects on liquid transfer during gravure printing. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2013 , 199, 1-11	2.7	29
111	Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. <i>Science</i> , 2013 , 339, 182-6	33.3	920
110	Macroscopic self-standing SWCNT fibres as efficient electron emitters with very high emission current for robust cold cathodes. <i>Carbon</i> , 2013 , 52, 356-362	10.4	22
109	Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. <i>ACS Nano</i> , 2013 , 7, 4503-10	16.7	82
108	Scalable Formation of Carbon Nanotube Films Containing Highly Aligned Whiskerlike Crystallites. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2013 , 52, 8705-8713	3.9	7
107	Direct real-time monitoring of stage transitions in graphite intercalation compounds. <i>ACS Nano</i> , 2013 , 7, 2773-80	16.7	121
106	Graphene nanoribbons as an advanced precursor for making carbon fiber. ACS Nano, 2013, 7, 1628-37	16.7	104

105	Evidence for adsorbate-enhanced field emission from carbon nanotube fibers. <i>Applied Physics Letters</i> , 2013 , 103, 053113	3.4	26
104	Transient stress-based and strain-based hemolysis estimation in a simplified blood pump. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2013 , 29, 1148-60	2.6	30
103	Demonstration of an Acid-Spun Single-Walled Nanotube Fiber Cathode. <i>IEEE Transactions on Plasma Science</i> , 2012 , 40, 1871-1877	1.3	19
102	Localized structures in vibrated emulsions. <i>Europhysics Letters</i> , 2012 , 98, 24002	1.6	7
101	Nonlinear photoluminescence imaging of isotropic and liquid crystalline dispersions of graphene oxide. <i>ACS Nano</i> , 2012 , 6, 8060-6	16.7	34
100	Nematic-Like Alignment in SWNT Thin Films from Aqueous Colloidal Suspensions. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10232-10237	3.9	22
99	Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor. <i>Chemical Physics Letters</i> , 2012 , 539-540, 94-101	2.5	12
98	High-performance carbon nanotube transparent conductive films by scalable dip coating. <i>ACS Nano</i> , 2012 , 6, 9737-44	16.7	254
97	Transport mechanism in granular Ni deposited on carbon nanotubes fibers. <i>Physical Review B</i> , 2012 , 86,	3.3	9
96	Electrically insulating thermal nano-oils using 2D fillers. ACS Nano, 2012, 6, 1214-20	16.7	189
95	Overcoming the "coffee-stain" effect by compositional Marangoni-flow-assisted drop-drying. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 6536-42	3.4	189
94	CatalystBupport interactions and their influence in water-assisted carbon nanotube carpet growth. <i>Carbon</i> , 2012 , 50, 2396-2406	10.4	50
93	Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11599-604	11.5	73
92	Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. <i>ACS Applied Materials & Discrete Sensitized Solar Cells.</i> 3, 3157-61	9.5	82
91	Direct imaging of carbon nanotubes spontaneously filled with solvent. <i>Chemical Communications</i> , 2011 , 47, 1228-30	5.8	10
90	Liquid crystals of aqueous, giant graphene oxide flakes. <i>Soft Matter</i> , 2011 , 7, 11154	3.6	160
89	Space-time least-squares finite element method for convection-reaction system with transformed variables. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2011 , 200, 2562-2576	5.7	13
88	Single-walled carbon nanotubes shell decorating porous silicate materials: A general platform for		

(2009-2011)

87	Templating of self-alignment patterns of anisotropic gold nanoparticles on ordered SWNT macrostructures. <i>ACS Applied Materials & District Research</i> , 10, 3, 3718-24	9.5	19
86	Effect of Functionalized Nanomaterials on the Rheology of Borate Cross-Linked Guar Gum. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2011 , 50, 3259-3264	3.9	12
85	Axial thermal rotation of slender rods. <i>Physical Review Letters</i> , 2011 , 106, 188302	7.4	9
84	Effect of potassium doping on electrical properties of carbon nanotube fibers. <i>Physical Review B</i> , 2011 , 84,	3.3	22
83	Low temperature conductivity of carbon nanotube aggregates. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 475302	1.8	12
82	Spontaneous high-concentration dispersions and liquid crystals of graphene. <i>Nature Nanotechnology</i> , 2010 , 5, 406-11	28.7	488
81	Formation of beads-on-a-string structures during break-up of viscoelastic filaments. <i>Nature Physics</i> , 2010 , 6, 625-631	16.2	225
80	Brownian motion of stiff filaments in a crowded environment. <i>Science</i> , 2010 , 330, 1804-7	33.3	103
79	Polymer translocation through pores with complex geometries. <i>Journal of Chemical Physics</i> , 2010 , 133, 024902	3.9	13
78	Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment. <i>ACS Nano</i> , 2010 , 4, 1131-45	16.7	82
77	Mono- and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2010 , 114, 14025-14028	3.8	39
76	Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. ACS Nano, 2010, 4, 390	69 . 7.8	108
75	Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano, 2010, 4, 3063-72	16.7	60
74	Dynamic Alignment of Single-Walled Carbon Nanotubes in Pulsed Magnetic Fields. <i>Journal of Low Temperature Physics</i> , 2010 , 159, 262-266	1.3	2
73	Viscoelastic flow in a two-dimensional collapsible channel. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2010 , 165, 1204-1218	2.7	11
7 ²	Insights into the physics of spray coating of SWNT films. <i>Chemical Engineering Science</i> , 2010 , 65, 2000-2	0.0484	68
71	Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. <i>Journal of Chemical Physics</i> , 2009 , 131, 084901	3.9	56
70	A review of computational fluid dynamics analysis of blood pumps. <i>European Journal of Applied Mathematics</i> , 2009 , 20, 363-397	1	89

69	True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. <i>Nature Nanotechnology</i> , 2009 , 4, 830-4	28.7	417
68	Nanotubes as polymers. <i>Polymer</i> , 2009 , 50, 4979-4997	3.9	170
67	Parallel solution of large-scale free surface viscoelastic flows via sparse approximate inverse preconditioning. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2009 , 157, 44-54	2.7	4
66	Beads-on-string formation during filament pinch-off: Dynamics with the PTT model for non-affine motion. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2009 , 159, 64-71	2.7	12
65	Operator splitting for the numerical solution of free surface flow at low capillary numbers. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 232, 72-81	2.4	
64	Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 14219-23	11.5	115
63	Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields. <i>ACS Nano</i> , 2009 , 3, 131-8	16.7	46
62	Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes. <i>ACS Nano</i> , 2009 , 3, 189-96	16.7	22
61	Self-Assembled Nanoparticle-Nanotube Structures (nanoPaNTs) Based on Antenna Chemistry of Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18863-18869	3.8	5
60	Recycling Ultrathin Catalyst Layers for Multiple Single-Walled Carbon Nanotube Array Regrowth Cycles and Selectivity in Catalyst Activation. <i>Chemistry of Materials</i> , 2009 , 21, 1550-1556	9.6	18
59	Nanoengineered carbon scaffolds for hydrogen storage. <i>Journal of the American Chemical Society</i> , 2009 , 131, 723-8	16.4	69
58	Do inner shells of double-walled carbon nanotubes fluoresce?. <i>Nano Letters</i> , 2009 , 9, 3282-9	11.5	36
57	Kinetics of Nanotube and Microfiber Scission under Sonication. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20599-20605	3.8	154
56	Continuous and scalable fabrication of transparent conducting carbon nanotube films. <i>ACS Nano</i> , 2009 , 3, 835-43	16.7	350
55	Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes. <i>ACS Nano</i> , 2009 , 3, 2153-6	16.7	44
54	Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 7467-77	3.4	23
53	High-shear treatment of single-walled carbon nanotube uperacid solutions as a pre-processing technique for the assembly of fibres and films. <i>Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems,</i> 2008 , 222, 101-109		1
52	Coil-stretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder. <i>Journal of Rheology</i> , 2008 , 52, 197-223	4.1	17

Multiscale simulation of dilute DNA in a roll-knife coating flow. Journal of Rheology, 2008, 52, 1405-14254.1 51 Synthesis of high aspect-ratio carbon nanotube "flying carpets" from nanostructured flake 50 11.5 64 substrates. Nano Letters, 2008, 8, 1879-83 Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes 16.7 49 90 directly from carpets. ACS Nano, 2008, 2, 1871-8 Temperature and Gas Pressure Effects in Vertically Aligned Carbon Nanotube Growth from FeMo 48 3.8 46 Catalyst. Journal of Physical Chemistry C, 2008, 112, 14041-14051 Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments. 16.4 63 47 Journal of the American Chemical Society, 2008, 130, 2626-33 Antenna chemistry with metallic single-walled carbon nanotubes. Journal of the American Chemical 46 16.4 23 Society, 2008, 130, 15340-7 Effect of charge distribution on the translocation of an inhomogeneously charged polymer through 16 3.9 45 a nanopore. Journal of Chemical Physics, 2008, 128, 125104 Carbon nanotube-based neat fibers. Nano Today, 2008, 3, 24-34 44 17.9 227 A computational study of the effect of viscoelasticity on slot coating flow of dilute polymer 2.7 43 23 solutions. Journal of Non-Newtonian Fluid Mechanics, 2008, 149, 104-123 Dynamics of viscoelastic liquid filaments: Low capillary number flows. Journal of Non-Newtonian 42 2.7 41 Fluid Mechanics, 2008, 150, 211-225 Solubility and Size Separation of Large Fullerenes in Concentrated Sulfuric Acids \(\textit{Journal of } \) 3.8 6 41 Physical Chemistry C, 2007, 111, 17966-17969 A highly selective, one-pot purification method for single-walled carbon nanotubes. *Journal of* 40 3.4 94 Physical Chemistry B, **2007**, 111, 1249-52 Simple Length Determination of Single-Walled Carbon Nanotubes by Viscosity Measurements in 39 5.5 72 Dilute Suspensions. Macromolecules, 2007, 40, 4043-4047 Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency 38 6.4 334 field. Cancer, 2007, 110, 2654-65 A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation 2.7 40 37 formulation. Journal of Non-Newtonian Fluid Mechanics, 2007, 147, 189-199 An isochoric domain deformation method for computing steady free surface flows with conserved 36 6 4.1 volumes. Journal of Computational Physics, 2007, 226, 398-413 Dispersions of functionalized single-walled carbon nanotubes in strong acids: solubility and 35 1.3 21 rheology. Journal of Nanoscience and Nanotechnology, 2007, 7, 3378-85 Self-Assembly of Single-Walled Carbon Nanotubes into a Sheet by Drop Drying. Advanced Materials, 24 111 34 2006, 18, 29-34

33	Models and finite element techniques for blood flow simulation. <i>International Journal of Computational Fluid Dynamics</i> , 2006 , 20, 175-181	1.2	9
32	Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. <i>Physical Review Letters</i> , 2006 , 96, 246104	7.4	129
31	Dynamics of polymer translocation through nanopores: theory meets experiment. <i>Physical Review Letters</i> , 2006 , 96, 118103	7.4	113
30	Highly Exfoliated Water-Soluble Single-Walled Carbon Nanotubes. <i>Chemistry of Materials</i> , 2006 , 18, 15	520 5.15 52	471
29	Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. <i>Artificial Organs</i> , 2006 , 30, 539-47	2.6	41
28	Four-field Galerkin/least-squares formulation for viscoelastic fluids. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2006 , 140, 132-144	2.7	40
27	Multiscale simulation of viscoelastic free surface flows. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2006 , 140, 87-107	2.7	23
26	Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. <i>Journal of the American Chemical Society</i> , 2006 , 128, 591-5	16.4	111
25	Revealing the Substructure of Single-Walled Carbon Nanotube Fibers. <i>Chemistry of Materials</i> , 2005 , 17, 6361-6368	9.6	12
24	Forward roll coating flows of viscoelastic liquids. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2005 , 130, 96-109	2.7	38
23	Single-walled carbon nanotubes in superacid: X-ray and calorimetric evidence for partly ordered H2SO4. <i>Physical Review B</i> , 2005 , 72,	3.3	26
22	Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction. <i>Journal of Chemical Physics</i> , 2005 , 122, 84903	3.9	41
21	Collapse of a semiflexible polymer in poor solvent. <i>Physical Review E</i> , 2004 , 69, 021916	2.4	62
20	Vorticity alignment and negative normal stresses in sheared attractive emulsions. <i>Physical Review Letters</i> , 2004 , 92, 058303	7.4	95
19	A tensor-based measure for estimating blood damage. Artificial Organs, 2004, 28, 1002-15	2.6	93
18	Theoretical modeling of microstructured liquids: a simple thermodynamic approach. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2004 , 120, 101-135	2.7	34
17	A new, convenient way of imposing open-flow boundary conditions in two- and three-dimensional viscoelastic flows. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2004 , 122, 159-176	2.7	15
16	Visualization of individual DNA molecules in a small-scale coating flow. <i>Journal of Rheology</i> , 2004 , 48, 745-764	4.1	11

LIST OF PUBLICATIONS

15	Phase Behavior and Rheology of SWNTs in Superacids. <i>Macromolecules</i> , 2004 , 37, 154-160	5.5	302
14	Macroscopic, neat, single-walled carbon nanotube fibers. <i>Science</i> , 2004 , 305, 1447-50	33.3	708
13	Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport. <i>Journal of Applied Physics</i> , 2004 , 95, 649-655	2.5	157
12	Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct Protonation. Journal of Physical Chemistry B, 2004 , 108, 8794-8798	3.4	240
11	DIFFERENT LEVELS OF HEMOLYSIS OCCURRED BY A CENTRIFUGAL BLOOD PUMP IN VARIOUS CLINICAL CONDITIONS. <i>ASAIO Journal</i> , 2004 , 50, 121	3.6	3
10	Thermoelectric power of p-doped single-wall carbon nanotubes and the role of phonon drag. <i>Physical Review Letters</i> , 2003 , 90, 065503	7.4	70
9	Free surface flows of polymer solutions with models based on the conformation tensor. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2002 , 108, 363-409	2.7	85
8	An efficient algorithm for metric correction forces in simulations of linear polymers with constrained bond lengths. <i>Journal of Chemical Physics</i> , 2002 , 116, 1834-1838	3.9	30
7	Preferred Orientation in Fibers of Hipco Single Wall Carbon Nanotubes from Diffuse X-Ray Scattering. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 740, 1		
6	Theory of linear viscoelasticity of semiflexible rods in dilute solution. <i>Journal of Rheology</i> , 2002 , 46, 11	11 ₄ .1£15	4 50
5	Viscoelasticity of dilute solutions of semiflexible polymers. <i>Physical Review E</i> , 2001 , 64, 020802	2.4	49
4	Can extensional viscosity be measured with opposed-nozzle devices?. <i>Rheologica Acta</i> , 1997 , 36, 429-4-	4& .3	69
3	Can extensional viscosity be measured with opposed-nozzle devices? 1997, 36, 429		4
2	Radiative transfer in photocatalytic systems. AICHE Journal, 1996 , 42, 532-537	3.6	75
1	Fluidic microactuation of flexible electrodes for neural recording		1