
Chae S Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4551896/publications.pdf Version: 2024-02-01

CHAESVI

#	Article	IF	CITATIONS
1	Dehydrative C–H Alkylation and Alkenylation of Phenols with Alcohols: Expedient Synthesis for Substituted Phenols and Benzofurans. Journal of the American Chemical Society, 2012, 134, 7325-7328.	13.7	203
2	Selective Catalytic Câ \in "H Alkylation of Alkenes with Alcohols. Science, 2011, 333, 1613-1616.	12.6	156
3	Scope and Mechanistic Study of the Ruthenium-Catalyzedortho-Câ^'H Bond Activation and Cyclization Reactions of Arylamines with Terminal Alkynes. Journal of the American Chemical Society, 2005, 127, 17000-17006.	13.7	142
4	Homogeneous Catalytic Dimerization of Terminal Alkynes by C5Me5Ru(L)H3 (L = PPh3, PCy3, PMe3). Organometallics, 1996, 15, 3968-3971.	2.3	139
5	Hydrovinylation and [2+2] Cycloaddition Reactions of Alkynes and Alkenes Catalyzed by a Well-Defined Cationic Rutheniumâ^'Alkylidene Complex. Organometallics, 1999, 18, 2043-2045.	2.3	132

CHAE S YI

#	Article	IF	CITATIONS
19	Experimental and Computational Studies of the Ruthenium-Catalyzed Hydrosilylation of Alkynes: Mechanistic Insights into the Regio- and Stereoselective Formation of Vinylsilanes. Organometallics, 2014, 33, 6937-6944.	2.3	58
20	Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand. Journal of the American Chemical Society, 2015, 137, 11105-11114.	13.7	56
21	Transfer Hydrogenation of Carbonyl Compounds Catalyzed by a Rutheniumâ^'Acetamido Complex:Â Evidence for a Stepwise Hydrogen Transfer Mechanism. Organometallics, 2001, 20, 3641-3643.	2.3	55
22	Selective Linear Coupling Reaction of Acetylene and Acrylonitrile Catalyzed by the Well-Defined Metallacyclopentadiene Complex C5Me5(PPh3)(Cl)RuCHCHCHCH. Organometallics, 1998, 17, 1257-1259.	2.3	54
23	Homogeneous Hydrogenation of Alkenes Catalyzed by the Rutheniumâ^'Hydride Complex (PCy3)2(CO)(Cl)RuH:A Spectroscopic Observation of the Rutheniumâ^'Ethyl and Rutheniumâ^'Ethyleneâr'Hydride Intermediate Species. Organometallics, 1999, 18, 5152-5156.	2.3	54
24	Acid-Promoted Homogeneous Hydrogenation of Alkenes Catalyzed by the Rutheniumâ^'Hydride Complex (PCy3)2(CO)(Cl)RuH:  Evidence for the Formation of 14-Electron Species from the Selective Entrapment of the Phosphine Ligand. Organometallics, 2000, 19, 2909-2915.	2.3	53
25	Hydrovinylation of Alkenes Catalyzed by the Rutheniumâ^'Hydride Complex Formed in Situ from (PCy3)2(CO)RuHCl and HBF4·OEt2. Organometallics, 2001, 20, 802-804.	2.3	51
26	Kinetic, Spectroscopic, and X-Ray Crystallographic Evidence for the Cooperative Mechanism of the Hydration of Nitriles Catalyzed by a Tetranuclear Ruthenium-μ-oxo-μ-hydroxo Complex. Organometallics, 2008, 27, 2030-2035.	2.3	45
27	Scope and Mechanistic Investigations on the Solvent-Controlled Regio- and Stereoselective Formation of Enol Esters from the Ruthenium-Catalyzed Coupling Reaction of Terminal Alkynes and Carboxylic Acids. Organometallics, 2009, 28, 6585-6592.	2.3	44
28	Regioselective Intermolecular Coupling Reaction of Arylketones and Alkenes Involving Câ^'H Bond Activation Catalyzed by an <i>in Situ</i> Formed Cationic Ruthenium Hydride Complex. Organometallics, 2009, 28, 4266-4268.	2.3	44
29	Reaction of thein-Situ-Generated Rutheniumâ^'Acetylide Complex C5Me5Ru(PPh3)Câ‹®CPh with Small Molecules. Organometallics, 1997, 16, 3729-3731.	2.3	43
30	Regio- and Stereoselective Ruthenium-Catalyzed Hydrovinylation of 1,3-Dienes:  Application to the Generation of a 20(S) Steroidal Side Chain. Organic Letters, 2003, 5, 1567-1569.	4.6	42
31	Regioselective Formation of α-Vinylpyrroles from the Ruthenium-Catalyzed Coupling Reaction of Pyrroles and Terminal Alkynes Involving Câ^'H Bond Activation. Journal of Organic Chemistry, 2010, 75, 3144-3146.	3.2	42
32	Conjugate Addition of Alcohols to Acrylic Compounds Catalyzed by a Bifunctional Rutheniumâ^'Acetamido Complex. Organometallics, 2003, 22, 3031-3033.	2.3	39
33	Chain-Selective and Regioselective Ethylene and Styrene Dimerization Reactions Catalyzed by a Well-Defined Cationic Ruthenium Hydride Complex: New Insights on the Styrene Dimerization Mechanism. Organometallics, 2010, 29, 3413-3417.	2.3	34
34	Highly Cooperative Tetrametallic Ruthenium-μ-Oxo-μ-Hydroxo Catalyst for the Alcohol Oxidation Reaction. Organometallics, 2006, 25, 1047-1051.	2.3	33
35	Intermolecular Dehydrative Coupling Reaction of Aryl Ketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Rutheniumâ' Hydride Complex: A Novel Ketone Olefination Method via Vinyl Câ' H Bond Activation. Organometallics, 2010, 29, 1883-1885.	2.3	30
36	Intermolecular Markovnikov-Selective Hydroacylation of Olefins Catalyzed by a Cationic Ruthenium–Hydride Complex. ACS Catalysis, 2016, 6, 3336-3339.	11.2	30

CHAE S YI

#	Article	IF	CITATIONS
37	Tetrasubstituted Olefins through the Stereoselective Catalytic Intermolecular Conjugate Addition of Simple Alkenes to α,βâ€Unsaturated Carbonyl Compounds. Angewandte Chemie - International Edition, 2011, 50, 1692-1695.	13.8	29
38	Deaminative and Decarboxylative Catalytic Alkylation of Amino Acids with Ketones. Angewandte Chemie - International Edition, 2013, 52, 13651-13655.	13.8	29
39	Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways. Organometallics, 2012, 31, 495-504.	2.3	26
40	Chemoselective Formation of Unsymmetrically Substituted Ethers from Catalytic Reductive Coupling of Aldehydes and Ketones with Alcohols in Aqueous Solution. Organic Letters, 2015, 17, 1778-1781.	4.6	26
41	Synthesis of 2â€Acylphenol and Flavene Derivatives from the Ruthenium atalyzed Oxidative C–H Acylation of Phenols with Aldehydes. European Journal of Organic Chemistry, 2015, 2015, 1899-1904.	2.4	24
42	Experimental and Computational Study of the (<i>Z</i>)-Selective Formation of Trisubstituted Olefins and Benzo-Fused Oxacycles from the Ruthenium-Catalyzed Dehydrative C–H Coupling of Phenols with Ketones. Journal of the American Chemical Society, 2018, 140, 10289-10296.	13.7	23
43	Formation of Substituted Vinylsilanes from the Ruthenium-Catalyzed Dehydrosilylation of Terminal Alkenes. Organometallics, 2000, 19, 2036-2039.	2.3	22
44	Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines. Journal of Organic Chemistry, 2018, 83, 4932-4947.	3.2	22
45	Catalytic Synthesis of Substituted Indoles and Quinolines from the Dehydrative C–H Coupling of Arylamines with 1,2- and 1,3-Diols. Organometallics, 2016, 35, 1973-1977.	2.3	21
46	Recent advances in the synthetic and mechanistic aspects of the ruthenium-catalyzed carbon–heteroatom bond forming reactions of alkenes and alkynes. Journal of Organometallic Chemistry, 2011, 696, 76-80.	1.8	20
47	Catalytic Carbon–Carbon Bond Activation of Saturated and Unsaturated Carbonyl Compounds via Chelate-Assisted Coupling Reaction with Indoles. ACS Catalysis, 2020, 10, 5852-5861.	11.2	18
48	Catalytic Formation of Silyl Enol Ethers and Its Applications for Aldol-Type Condensation and Aminomethylation Reactions. ACS Catalysis, 2011, 1, 544-547.	11.2	13
49	Formation of bicyclic pyrroles from the catalytic coupling reaction of 2,5-disubstituted pyrroles with terminal alkynes, involving the activation of multiple C–H bonds. Chemical Communications, 2008, , 2349.	4.1	12
50	Catalytic Tandem and One-Pot Dehydrogenation–Alkylation and â~'Insertion Reactions of Saturated Hydrocarbons with Alcohols and Alkenes. ACS Catalysis, 2016, 6, 8395-8398.	11.2	11
51	Experimental and Computational Studies on the Ruthenium-Catalyzed Dehydrative C–H Coupling of Phenols with Aldehydes for the Synthesis of 2-Alkylphenol, Benzofuran, and Xanthene Derivatives. Journal of the American Chemical Society, 2021, 143, 13428-13440.	13.7	11
52	Synthesis of Flavanone and Quinazolinone Derivatives from the Ruthenium-Catalyzed Deaminative Coupling Reaction of 2′-Hydroxyaryl Ketones and 2-Aminobenzamides with Simple Amines. Organic Letters, 2022, 24, 218-222.	4.6	11
53	Scope and Mechanism of the Redox-Active 1,2-Benzoquinone Enabled Ruthenium-Catalyzed Deaminative α-Alkylation of Ketones with Amines. ACS Catalysis, 2021, 11, 13962-13972.	11.2	7
54	Atom transfer radical polymerization of methyl methacrylate by copper(I)-pyridine-2-carboximidate catalysts. Journal of Polymer Science Part A, 2004, 42, 2747-2755.	2.3	6

#	Article	IF	CITATIONS
55	Scope and Mechanism of the Ruthenium-Catalyzed Dehydrative C–H Coupling of Phenols with α,β-Unsaturated Carbonyl Compounds: Expedient Synthesis of Chromene and Benzoxacyclic Derivatives. Organometallics, 2019, 38, 4625-4632.	2.3	5
56	Catalytic Synthesis of Tricyclic Quinoline Derivatives from the Regioselective Hydroamination and C—H Bond Activation Reaction of Benzocyclic Amines and Alkynes ChemInform, 2005, 36, no.	0.0	0
57	Ruthenium-Catalyzed Intermolecular Coupling Reactions of Arylamines with Ethylene and 1,3-Dienes: Mechanistic Insight on Hydroamination vs ortho-C—H Bond Activation ChemInform, 2005, 36, no.	0.0	Ο