
Stéphane Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4551886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Tgfâ€Î²</i> superfamily and limb regeneration: <i>Tgfâ€Î²</i> to start and <i>Bmp</i> to end. Developmental Dynamics, 2022, 251, 973-987.	1.8	9
2	BMP signaling is essential for sustaining proximo-distal progression in regenerating axolotl limbs. Development (Cambridge), 2020, 147, .	2.5	24
3	Epithelial to mesenchymal transition is mediated by both TGF-Î ² canonical and non-canonical signaling during axolotl limb regeneration. Scientific Reports, 2019, 9, 1144.	3.3	27
4	Tissue regeneration in dentistry: Can salamanders provide insight?. Oral Diseases, 2018, 24, 509-517.	3.0	6
5	Senescence gives insights into the morphogenetic evolution of anamniotes. Biology Open, 2017, 6, 891-896.	1.2	33
6	Oralâ€Facial Tissue Reconstruction in the Regenerative Axolotl. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 489-502.	1.3	11
7	Activation of Smad2 but not Smad3 is required for mediating TGF-beta signaling during limb regeneration in axolotls. Development (Cambridge), 2016, 143, 3481-3490.	2.5	33
8	Abdominal Distension Associated with Luminal Fungi in the Intestines of Axolotl Larvae. Case Reports in Veterinary Medicine, 2015, 2015, 1-3.	0.2	1
9	Culture and Transfection of Axolotl Cells. Methods in Molecular Biology, 2015, 1290, 187-196.	0.9	6
10	Axolotl as a Model to Study Scarless Wound Healing in Vertebrates: Role of the Transforming Growth Factor Beta Signaling Pathway. Advances in Wound Care, 2013, 2, 250-260.	5.1	40
11	Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 684-697.	1.3	102
12	BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Developmental Biology, 2010, 10, 15.	2.1	46
13	Analysis of the expression and function of Wntâ€5a and Wntâ€5b in developing and regenerating axolotl (<i>Ambystoma mexicanum</i>) limbs. Development Growth and Differentiation, 2008, 50, 289-297.	1.5	62
14	Regeneration in axolotls: a model to aim for!. Experimental Gerontology, 2008, 43, 968-973.	2.8	62
15	The axolotl limb: A model for bone development, regeneration and fracture healing. Bone, 2007, 40, 45-56.	2.9	62
16	Transforming Growth Factor: β Signaling Is Essential for Limb Regeneration in Axolotls. PLoS ONE, 2007, 2, e1227.	2.5	127
17	Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. BMC Evolutionary Biology, 2007, 7, 180.	3.2	47
18	Limb Regeneration in Axolotl: Is It Superhealing?. Scientific World Journal, The, 2006, 6, 12-25.	2.1	36

STéPHANE ROY

#	Article	IF	CITATION
19	Limb Regeneration in Axolotl: Is It Superhealing?. TSW Development & Embryology, 2006, 1, 12-25.	0.2	7
20	Expression of heat-shock protein 70 during limb development and regeneration in the axolotl. Developmental Dynamics, 2005, 233, 1525-1534.	1.8	23
21	Cyclopamine induces digit loss in regenerating axolotl limbs. The Journal of Experimental Zoology, 2002, 293, 186-190.	1.4	56
22	Vaccinia as a Tool for Functional Analysis in Regenerating Limbs: Ectopic Expression of Shh. Developmental Biology, 2000, 218, 199-205.	2.0	86
23	Towards a functional analysis of limb regeneration. Seminars in Cell and Developmental Biology, 1999, 10, 385-393.	5.0	46
24	Growth Hormone Normalizes Renal 1,25-Dihydroxyvitamin D3-24-Hydroxylase Gene Expression but Not Na+-Phosphate Cotransporter (Npt2) mRNA in Phosphate-Deprived Hyp Mice. Journal of Bone and Mineral Research, 1997, 12, 1672-1680.	2.8	11
25	Endothelium-dependent contractile effect of trypsin-activated receptor (PAR2) stimulation in rat vascular tissue. Proceedings of the Western Pharmacology Society, 1997, 40, 53-5.	0.1	0
26	Transcriptional regulation and renal localization of 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression: effects of the Hyp mutation and 1,25-dihydroxyvitamin D3 Endocrinology, 1996, 137, 2938-2946.	2.8	26
27	Transcriptional regulation and renal localization of 1,25- dihydroxyvitamin D3-24-hydroxylase gene expression: effects of the Hyp mutation and 1,25-dihydroxyvitamin D3. Endocrinology, 1996, 137, 2938-2946.	2.8	5
28	Comparative effects of 1,25-dihydroxyvitamin D3 and EB 1089 on mouse renal and intestinal 25-hydroxyvitamin D3-24-hydroxylase. Journal of Bone and Mineral Research, 1995, 10, 1951-1959.	2.8	14
29	Increased renal 25-hydroxyvitamin D3-24-hydroxylase messenger ribonucleic acid and immunoreactive protein in phosphate-deprived Hyp mice: a mechanism for accelerated 1,25-dihydroxyvitamin D3 catabolism in X-linked hypophosphatemic rickets Endocrinology, 1994, 134, 1761-1767.	2.8	48
30	The integrity of the stem structure of human immunodeficiency virus type 1 Tat-responsive sequence of RNA is required for interaction with the interferon-induced 68,000-Mr protein kinase. Journal of Virology, 1991, 65, 632-640.	3.4	124
31	Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science, 1990, 247, 1216-1219.	12.6	171
32	A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation Genes and Development, 1990, 4, 1365-1373.	5.9	457
33	Structural requirements for trans activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: importance of base pairing, loop sequence, and bulges in the tat-responsive sequence. lournal of Virology, 1990, 64, 1402-1406.	3.4	170