## Vincenzina Barbera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4551566/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Palladium(II)/Copper Halide/Solvent Combination for Selective Intramolecular Domino Reactions of<br>Indolecarboxylic Acid Allylamides: An Unprecedented Arylation/Esterification Sequence. Advanced<br>Synthesis and Catalysis, 2012, 354, 159-170. | 2.1 | 59        |
| 2  | Selective Intramolecular Palladium(II)â€Catalyzed Aminooxygenation <i>vs.</i> Diamination of<br>Alkenylureas: Efficient Microwaveâ€Assisted Reactions to Bicyclic Piperazinones. Advanced Synthesis<br>and Catalysis, 2013, 355, 1640-1648.         | 2.1 | 44        |
| 3  | Crystallinity and crystalline phase orientation of poly(1,4- <i>cis</i> -isoprene) from <i>Hevea<br/>brasiliensis</i> and <i>Taraxacum kok-saghyz</i> . Polymers for Advanced Technologies, 2016, 27,<br>1082-1090.                                 | 1.6 | 30        |
| 4  | FACILE FUNCTIONALIZATION OF sp2 CARBON ALLOTROPES WITH A BIOBASED JANUS MOLECULE. Rubber Chemistry and Technology, 2017, 90, 285-307.                                                                                                               | 0.6 | 30        |
| 5  | Biobased Janus molecule for the facile preparation of water solutions of few layer graphene sheets.<br>RSC Advances, 2015, 5, 81142-81152.                                                                                                          | 1.7 | 27        |
| 6  | Functionalization of Single and Multi-Walled Carbon Nanotubes with Polypropylene Glycol<br>Decorated Pyrrole for the Development of Doxorubicin Nano-Conveyors for Cancer Drug Delivery.<br>Nanomaterials, 2020, 10, 1073.                          | 1.9 | 26        |
| 7  | Domino Reaction for the Sustainable Functionalization of Few-Layer Graphene. Nanomaterials, 2019, 9, 44.                                                                                                                                            | 1.9 | 22        |
| 8  | Selective edge functionalization of graphene layers with oxygenated groups by means of<br>Reimer–Tiemann and domino Reimer–Tiemann/Cannizzaro reactions. Journal of Materials Chemistry A,<br>2018, 6, 7749-7761.                                   | 5.2 | 20        |
| 9  | Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High<br>Surface Area Graphite. Biomacromolecules, 2017, 18, 3978-3991.                                                                                    | 2.6 | 19        |
| 10 | Facile and sustainable functionalization of graphene layers with pyrrole compounds. Pure and Applied Chemistry, 2018, 90, 253-270.                                                                                                                  | 0.9 | 19        |
| 11 | Thermally reversible highly crossâ€linked polymeric materials based on furan/maleimide<br><scp>D</scp> ielsâ€ <scp>A</scp> lder adducts. Journal of Applied Polymer Science, 2015, 132, .                                                           | 1.3 | 18        |
| 12 | Polyhydroxylated few layer graphene for the preparation of flexible conductive carbon paper. RSC Advances, 2016, 6, 87767-87777.                                                                                                                    | 1.7 | 18        |
| 13 | Catalytic Ozonation Using Edge-Hydroxylated Graphite-Based Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 17443-17452.                                                                                                              | 3.2 | 18        |
| 14 | Supramolecular interactions of carbon nanotubes with biosourced polyurethanes from 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol. Polymer, 2015, 63, 62-70.                                                                                       | 1.8 | 17        |
| 15 | Tuning the Solubility Parameters of Carbon Nanotubes by Means of Their Adducts with Janus Pyrrole<br>Compounds. Nanomaterials, 2020, 10, 1176.                                                                                                      | 1.9 | 15        |
| 16 | Design, Synthesis, Molecular Docking and Crystal Structure Prediction of New Azasugar Analogues of αâ€Glucosidase Inhibitors. European Journal of Organic Chemistry, 2011, 2011, 7278-7287.                                                         | 1.2 | 13        |
| 17 | Master curves for the sulphur assisted crosslinking reaction of natural rubber in the presence of nano- and nano-structured sp2 carbon allotropes. EXPRESS Polymer Letters, 2017, 11, 435-448.                                                      | 1.1 | 12        |
| 18 | sp2 carbon allotropes in elastomer matrix: From master curves for the mechanical reinforcement to lightweight materials. EXPRESS Polymer Letters, 2018, 12, 265-283.                                                                                | 1.1 | 11        |

VINCENZINA BARBERA

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Anisotropic properties of elastomeric nanocomposites based on natural rubber and sp2 carbon allotropes. EXPRESS Polymer Letters, 2018, 12, 713-730.                                                                                                                                | 1.1 | 9         |
| 20 | Environmentally Friendly and Regioselective One-Pot Synthesis of Imines and Oxazolidines Serinol<br>Derivatives and Their Use for Rubber Cross-Linking. ACS Sustainable Chemistry and Engineering, 2020,<br>8, 9356-9366.                                                          | 3.2 | 9         |
| 21 | Edge Functionalized Graphene Layers for (Ultra) High Exfoliation in Carbon Papers and Aerogels in the<br>Presence of Chitosan. Materials, 2020, 13, 39.                                                                                                                            | 1.3 | 8         |
| 22 | A sustainable porous composite material based on loofah-halloysite for gas adsorption and drug delivery. Materials Chemistry Frontiers, 2022, 6, 2233-2243.                                                                                                                        | 3.2 | 8         |
| 23 | Synthesis and biological evaluation of 1,7,8,8a-tetrahydro-3H-oxazolo[3,4-a]pyrazin-6(5H)-ones as antitumoral agents. Bioorganic and Medicinal Chemistry, 2013, 21, 5748-5753.                                                                                                     | 1.4 | 6         |
| 24 | Polyether from a biobased Janus molecule as surfactant for carbon nanotubes. EXPRESS Polymer<br>Letters, 2016, 10, 548-558.                                                                                                                                                        | 1.1 | 6         |
| 25 | A Grapheneâ€Based Supramolecular Nanoreactor for the Fast Synthesis of Imines in Water. Small, 2020, 16, e2001207.                                                                                                                                                                 | 5.2 | 4         |
| 26 | SERINOL DERIVATIVES FOR THE SUSTAINABLE VULCANIZATION OF DIENE ELASTOMERS. Rubber Chemistry and Technology, 2018, 91, 701-718.                                                                                                                                                     | 0.6 | 4         |
| 27 | Facile Edge Functionalization of Graphene Layers with a Biosourced 2-Pyrone. ACS Sustainable<br>Chemistry and Engineering, 2022, 10, 4082-4093.                                                                                                                                    | 3.2 | 4         |
| 28 | Processing and strain induced crystallization and reinforcement under strain of poly(1,4-cis-isoprene)<br>from Ziegler–Natta catalysis, hevea brasiliensis, taraxacum kok-saghyz and partenium argentatum.<br>Advanced Industrial and Engineering Polymer Research, 2019, 2, 1-12. | 2.7 | 3         |
| 29 | Functionalized sp2 carbon allotropes as fillers for rubber nanocomposites. , 2020, , 43-92.                                                                                                                                                                                        |     | 3         |
| 30 | Controlled Functionalization of Graphene Layers. , 0, , .                                                                                                                                                                                                                          |     | 1         |
| 31 | Polyhydroxylated Nanosized Graphite as Multifunctional Building Block for Polyurethanes. Polymers, 2022, 14, 1159.                                                                                                                                                                 | 2.0 | 1         |
| 32 | Interactive effects between carbon allotropes on the mechanical reinforcement of nanocomposites based on poly(1,4-cis-isoprene). , 2014, , .                                                                                                                                       |     | 0         |
| 33 | Bionanocomposites based on a covalent network of chitosan and edge functionalized graphene layers. Journal of Applied Biomaterials and Functional Materials, 2021, 19, 228080002110174.                                                                                            | 0.7 | 0         |