
Chenglin Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4551508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smart activatable fluorescent probe provides high-quality signal-to-noise ratio and detection limits for electrochemiluminescence. Sensors and Actuators B: Chemical, 2022, 356, 131363.	4.0	12
2	An electrochemiluminescence immunosensor based on Ag-Ti3C2 MXene and CNNVs with multiple signal amplification strategies. Bioelectrochemistry, 2022, 146, 108131.	2.4	4
3	Application of a CuS/Au heterostructure with peroxidase-like activity in immunosensors. New Journal of Chemistry, 2022, 46, 13963-13970.	1.4	6
4	Temperature Platform Constructed Using a Cu ₂ O–Cu ₃₁ S ₁₆ Photothermal Conversion System for the Simple Quantitative Analysis of Tumor Markers. ACS Sustainable Chemistry and Engineering, 2022, 10, 8517-8525.	3.2	6
5	An immunosensor detects carcinoembryonic antigen by dual catalytic signal enhancer-hydrogen peroxide based on in-situ reduction of silver nanoparticles with dopamine and graphene high-load cobalt tetroxide. Microchemical Journal, 2021, 160, 105602.	2.3	10
6	The application of the inexpensive and synthetically simple electrocatalyst CuFe-MoC@NG in immunosensors. Analyst, The, 2021, 146, 5421-5428.	1.7	4
7	Ultrasensitive immunosensor for detecting CEA based on double amplified signal of graphene loaded CoFe 2 O 4 /AgÂnanoparticles. Micro and Nano Letters, 2021, 16, 257-262.	0.6	3
8	Ultrasensitive electrochemical immunosensor based on the signal amplification strategy of the competitive reaction of Zn2+ and ATP ions to construct a "signal on―mode GOx-HRP enzyme cascade reaction. Mikrochimica Acta, 2021, 188, 61.	2.5	16
9	Differences in Performance of Immunosensors Constructed Based on CeO ₂ -Simulating Auxiliary Enzymes. ACS Biomaterials Science and Engineering, 2021, 7, 1058-1064.	2.6	11
10	Detection of AFP by Electrochemical Immunosensor Based on Ag/Fe 3 O 4 /g 3 N 4. ChemistrySelect, 2021, 6, 3394-3398.	0.7	3
11	In-vitro and in-vivo monitoring of gold(III) ions from intermediate metabolite of sodium aurothiomalate through water-soluble ruthenium (II) complex-based luminescent probe. Bioorganic Chemistry, 2021, 110, 104749.	2.0	5
12	An immunosensor based on an electrochemical-chemical-chemical advanced redox cycle amplification strategy for the ultrasensitive determination of CEA. Analytica Chimica Acta, 2021, 1170, 338647.	2.6	8
13	An immunosensor using functionalized Cu2O/Pt NPs as the signal probe for rapid and highly sensitive CEA detection with colorimetry and electrochemistry dual modes. Sensors and Actuators B: Chemical, 2021, 341, 130032.	4.0	39
14	The electrochemical immunosensor of the "signal on" strategy that activates MMoO4 (MÂ= Co, Ni) peroxidase with Cu2+ to achieve ultrasensitive detection of CEA. Analytica Chimica Acta, 2021, 1176, 338757.	2.6	8
15	Electrochemical immunosensor using artificial enzyme-induced metallization for the ultra-sensitive detection of alpha fetoprotein. Sensors and Actuators B: Chemical, 2021, 344, 130258.	4.0	19
16	Enzyme-free sandwich-type electrochemical immunosensor for CEA detection based on the cooperation of an Ag/g-C3N4-modified electrode and Au@SiO2/Cu2O with core-shell structure. Bioelectrochemistry, 2021, 142, 107931.	2.4	21
17	PSA detection electrochemical immunosensor based on MOF-235 nanomaterial adsorption aggregation signal amplification strategy. Microchemical Journal, 2021, 171, 106870.	2.3	23
18	Ti3C2 MXene anchors CuAu-LDH multifunctional two-dimensional nanomaterials for dual-mode detection of CEA in electrochemical immunosensors. Bioelectrochemistry, 2021, 142, 107943.	2.4	18

CHENGLIN HONG

#	Article	IF	CITATIONS
19	Construction of a "Signal On―Electrochemical Immunosensor Based on Light Induction. ACS Sustainable Chemistry and Engineering, 2021, 9, 13788-13797.	3.2	9
20	An electrochemical immunosensor for the detection of carcinoembryonic antigen based on Au/g-C3N4 NSs-modified electrode and CuCo/CNC as signal tag. Mikrochimica Acta, 2021, 188, 408.	2.5	8
21	A sandwich-type electrochemical immunosensor for detecting CEA based on CeO2-MoS2 absorbed Pb2+. Analytical Biochemistry, 2020, 592, 113566.	1.1	24
22	An immunosensor detects carcinoembryonic antigen by a double reduction strategy based on polyphenylamine as a sacrifice reducing agent. International Journal of Hydrogen Energy, 2020, 45, 5055-5066.	3.8	16
23	Microwave-assisted preparation of ZnFe2O4-Ag/rGO nanocomposites for amplification signal detection of alpha-fetoprotein. Bioelectrochemistry, 2020, 132, 107434.	2.4	20
24	Electrochemical sensor for a photoassisted heterogeneous Fenton self-oxidation signal amplification strategy. Sensors and Actuators B: Chemical, 2020, 324, 128772.	4.0	9
25	A sandwich-type electrochemical immunosensor for ultrasensitive detection of multiple tumor markers using an electrical signal difference strategy. Talanta, 2020, 219, 121322.	2.9	24
26	A sandwich-type electrochemical immunosensor using Ag@CeO2-Au as a lable for sensitive detection of carcinoembryonic antigen. Microchemical Journal, 2020, 159, 105415.	2.3	17
27	Bimetallic PtCu nanoparticles supported on molybdenum disulfide–functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Mikrochimica Acta, 2020, 187, 538.	2.5	11
28	Ultrasensitive immunosensor for AFP detection based on Cu ₂ O to generate electrical signals. Micro and Nano Letters, 2020, 15, 125-129.	0.6	7
29	The Synergistic Effect of Ferrocene and Cu ₂ O to Construct a Sandwich-Type Multi-Signal Amplification Ultra-Sensitive Immunosensor for Carcinoembryonic Antigen Detection. Journal of the Electrochemical Society, 2020, 167, 027538.	1.3	7
30	A sandwich-type electrochemical immunosensor for ultrasensitive detection of CEA based on core–shell Cu2O@Cu-MOF@Au NPs nanostructure attached with HRP for triple signal amplification. Journal of Materials Science, 2020, 55, 13980-13994.	1.7	16
31	Optimal film thickness of rGO/MoS2 @ polyaniline nanosheets of 3D arrays for carcinoembryonic antigen high sensitivity detection. Microchemical Journal, 2020, 155, 104694.	2.3	35
32	Functionalized polyaniline based on protonic acid doping as a direct electron mediator to amplify sensor signals. Journal of Molecular Structure, 2020, 1209, 127924.	1.8	11
33	Sensitive detection of carcinoembryonic antigen (CEA) by a sandwich-type electrochemical immunosensor using MOF-Ce@HA/Ag-HRP-Ab ₂ as a nanoprobe. Nanotechnology, 2020, 31, 185605.	1.3	18
34	A novel electrochemical immunosensor based on CoS ₂ for early screening of tumor marker carcinoembryonic antigen. New Journal of Chemistry, 2020, 44, 3524-3532.	1.4	10
35	First use of inorganic copper silicate-transduced enzyme-free electrochemical immunosensor for carcinoembryonic antigen detection. Sensors and Actuators B: Chemical, 2020, 319, 128311.	4.0	21
36	An electrochemical immunosensor for CEA detection based on Au-Ag/rGO@PDA nanocomposites as integrated double signal amplification strategy. Microchemical Journal, 2019, 151, 104223.	2.3	35

CHENGLIN HONG

#	Article	IF	CITATIONS
37	Sandwich-type electrochemical immunosensor constructed using three-dimensional lamellar stacked CoS2@C hollow nanotubes prepared by template-free method to detect carcinoembryonic antigen. Analytica Chimica Acta, 2019, 1088, 54-62.	2.6	34
38	3D graphene/MWNTs nano-frameworks embedded Ag-Au bimetallic NPs for carcinoembryonic antigen detection. Microchemical Journal, 2019, 148, 548-554.	2.3	18
39	A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine. Microchemical Journal, 2019, 147, 191-197.	2.3	26
40	Electrochemical immunosensor for alphaâ€fetoprotein based on prussian blueâ€carbon nanotube@polydopamine. Micro and Nano Letters, 2018, 13, 58-62.	0.6	11
41	Seasonal variations of mercury levels and human health risk in vegetables from Arid Oasis (Shihezi) Tj ETQq1	1 0.784314 r 1.7	rgBT /Overloc
42	Adsorption and desorption of Hg(II) by three typical soils around the chlor-alkali industry. Human and Ecological Risk Assessment (HERA), 2017, 23, 1601-1609.	1.7	2
43	A porous CuO nanowire-based signal amplification immunosensor for the detection of carcinoembryonic antigens. RSC Advances, 2016, 6, 16982-16987.	1.7	11
44	Heavy metal contamination of urban topsoil in a petrochemical industrial city in Xinjiang, China. Journal of Arid Land, 2016, 8, 871-880.	0.9	31
45	Cu2O rhombic dodecahedra as a superexcellent electroactive substance for ultrasensitive electrochemical immunosensors. Analytical Methods, 2016, 8, 1307-1312.	1.3	2
46	Graphene oxide supported rhombic dodecahedral Cu2O nanocrystals for the detection of carcinoembryonic antigen. Analytical Biochemistry, 2016, 494, 101-107.	1.1	24
47	An electrochemical immunosensor for simultaneous point-of-care cancer markers based on the host–guest inclusion of β-cyclodextrin–graphene oxide. Journal of Materials Chemistry B, 2016, 4, 990-996.	2.9	51
48	A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels. Biosensors and Bioelectronics, 2016, 79, 48-54.	5.3	94
49	Multi-walled carbon nanotubes–chitosan with a branched structure modified with ferrocenecarboxylic acid for carcinoembryonic antigen detection. Analytical Methods, 2015, 7, 10032-10039.	1.3	7
50	Graphene oxide stabilized Cu2O for shape selective nanocatalysis. Journal of Materials Chemistry A, 2014, 2, 7147.	5.2	28
51	Ultrasensitive amperometric immunosensor for the determination of carcinoembryonic antigen based on a porous chitosan and gold nanoparticles functionalized interface. Mikrochimica Acta, 2009, 167, 217-224.	2.5	21
52	Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3. Analytica Chimica Acta, 2009, 633, 244-249.	2.6	27
53	Enhancement of carcinoembryonic antibody immobilization on gold electrode modified by gold nanoparticles and SiO2/Thionine nanocomposite. Journal of Electroanalytical Chemistry, 2009, 628, 90-96.	1.9	53
54	Porous redox-active Cu2O–SiO2 nanostructured film: Preparation, characterization and application for a label-free amperometric ferritin immunosensor. Talanta, 2009, 78, 596-601.	2.9	20

#	Article	IF	CITATIONS
55	Biomoleculeâ€Doped Organic/Inorganic Hybrid Nanocomposite Film for Labelâ€Free Electrochemical Immunoassay of αâ€Iâ€Fetoprotein. Electroanalysis, 2008, 20, 989-995.	1.5	11

56Amperometric Immunosensor for the Determination of αâ€Iâ€Fetoprotein Based on Coreâ€Shellâ€Shell Prussian
Blueâ€BSAâ€Nanogold Functionalized Interface. Electroanalysis, 2008, 20, 2185-2191.21