Reingard Maria Grabherr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4550877/publications.pdf

Version: 2024-02-01

96 papers 2,969 citations

32 h-index 205818 48 g-index

102 all docs 102 docs citations

times ranked

102

3325 citing authors

#	Article	IF	Citations
1	Adaptive Evolution in Producing Microtiter Cultivations Generates Genetically Stable <i>EscherichiaÂcoli</i> Production Hosts for Continuous Bioprocessing. Biotechnology Journal, 2021, 16, e2000376.	1.8	2
2	Accelerating HIVâ€1 VLP production using stable High Five insect cell pools. Biotechnology Journal, 2021, 16, 2000391.	1.8	12
3	Use of an Alignment-Free Method for the Geographical Discrimination of GTPVs Based on the GPCR Sequences. Microorganisms, 2021, 9, 855.	1.6	O
4	A comprehensive antigen production and characterisation study for easy-to-implement, specific and quantitative SARS-CoV-2 serotests. EBioMedicine, 2021, 67, 103348.	2.7	34
5	Molecular Analysis of East African Lumpy Skin Disease Viruses Reveals a Mixed Isolate with Features of Both Vaccine and Field Isolates. Microorganisms, 2021, 9, 1142.	1.6	16
6	(S)-Reutericyclin: Susceptibility Testing and In Vivo Effect on Murine Fecal Microbiome and Volatile Organic Compounds. International Journal of Molecular Sciences, 2021, 22, 6424.	1.8	3
7	Production, Storage Stability, and Susceptibility Testing of Reuterin and Its Impact on the Murine Fecal Microbiome and Volatile Organic Compound Profile. Frontiers in Microbiology, 2021, 12, 699858.	1.5	5
8	Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. Journal of Allergy and Clinical Immunology, 2020, 145, 229-238.	1.5	32
9	Off-target effects of an insect cell-expressed influenza HA-pseudotyped Gag-VLP preparation in limiting postinfluenza Staphylococcus aureus infections. Vaccine, 2020, 38, 859-867.	1.7	9
10	Fast and antibiotic free genome integration into EscherichiaÂcoli chromosome. Scientific Reports, 2020, 10, 16510.	1.6	10
11	The Effects of Prebiotic Supplementation with OMNi-LOGIC® FIBRE on Fecal Microbiome, Fecal Volatile Organic Compounds, and Gut Permeability in Murine Neuroblastoma-Induced Tumor-Associated Cachexia. Nutrients, 2020, 12, 2029.	1.7	17
12	A Novel, Broad-Acting Peptide Inhibitor of Double-Stranded DNA Virus Gene Expression and Replication. Frontiers in Microbiology, 2020, 11, 601555.	1.5	8
13	PEI-Mediated Transient Transfection of High Five Cells at Bioreactor Scale for HIV-1 VLP Production. Nanomaterials, 2020, 10, 1580.	1.9	12
14	Escherichia coli $ f $ 70 promoters allow expression rate control at the cellular level in genome-integrated expression systems. Microbial Cell Factories, 2020, 19, 58.	1.9	16
15	Development of a Dual-Vector System Utilizing MicroRNA Mimics of the Autographa californica miR-1 for an Inducible Knockdown in Insect Cells. International Journal of Molecular Sciences, 2019, 20, 533.	1.8	3
16	An HRM Assay to Differentiate Sheeppox Virus Vaccine Strains from Sheeppox Virus Field Isolates and other Capripoxvirus Species. Scientific Reports, 2019, 9, 6646.	1.6	21
17	A HER2-Displaying Virus-Like Particle Vaccine Protects from Challenge with Mammary Carcinoma Cells in a Mouse Model. Vaccines, 2019, 7, 41.	2.1	7
18	Microbioreactor Cultivations of Fabâ€Producing <i>Escherichia coli</i> Reveal Genomeâ€Integrated Systems as Suitable for Prospective Studies on Direct Fab Expression Effects. Biotechnology Journal, 2019, 14, e1800637.	1.8	25

#	Article	IF	Citations
19	Constitutive expression and cell-surface display of a bacterial \hat{l}^2 -mannanase in Lactobacillus plantarum. Microbial Cell Factories, 2019, 18, 76.	1.9	19
20	The Potential of Influenza HA-Specific Immunity in Mitigating Lethality of Postinfluenza Pneumococcal Infections. Vaccines, 2019, 7, 187.	2.1	6
21	Comparative transcriptome analysis of a Trichoplusia ni cell line reveals distinct host responses to intracellular and secreted protein products expressed by recombinant baculoviruses. Journal of Biotechnology, 2018, 270, 61-69.	1.9	23
22	A gel-based PCR method to differentiate sheeppox virus field isolates from vaccine strains. Virology Journal, 2018, 15, 59.	1.4	22
23	Systems biology of robustness and flexibility: Lactobacillus buchneri â€"A show case. Journal of Biotechnology, 2017, 257, 61-69.	1.9	28
24	A novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance. Scientific Reports, 2017, 7, 42892.	1.6	43
25	The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends in Biotechnology, 2017, 35, 756-769.	4.9	106
26	Expression of full-length HER2 protein in Sf 9 insect cells and its presentation on the surface of budded virus-like particles. Protein Expression and Purification, 2017, 136, 27-38.	0.6	14
27	Genetic characterization of poxviruses in Camelus dromedarius in Ethiopia, 2011–2014. Antiviral Research, 2016, 134, 17-25.	1.9	10
28	Molecular characterization of orf virus from sheep and goats in Ethiopia, 2008–2013. Virology Journal, 2016, 13, 34.	1.4	31
29	Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microbial Cell Factories, 2016, 15, 50.	1.9	35
30	Globular Head-Displayed Conserved Influenza H1 Hemagglutinin Stalk Epitopes Confer Protection against Heterologous H1N1 Virus. PLoS ONE, 2016, 11, e0153579.	1,1	19
31	Editorial: Can modern vaccine technology pursue the success of traditional vaccine manufacturing?. Biotechnology Journal, 2015, 10, 657-658.	1.8	6
32	Characterization of the Lactobacillus plantarum plasmid pCD033 and generation of the plasmid free strain L. plantarum 3NSH. Plasmid, 2015, 81, 9-20.	0.4	9
33	Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure. Antiviral Research, 2015, 119, 28-35.	1.9	65
34	Atopic donor status does not influence the uptake of the major grass pollen allergen, Phl p 5, by dendritic cells. Journal of Immunological Methods, 2015, 424, 120-130.	0.6	2
35	Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE, 2015, 10, e0134149.	1.1	19
36	Minimizing fucosylation in insect cellâ€derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnology Journal, 2014, 9, 1206-1214.	1.8	20

#	Article	lF	CITATIONS
37	UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase from the snail Biomphalaria glabrata – substrate specificity and preference of glycosylation sites. Glycoconjugate Journal, 2014, 31, 661-670.	1.4	6
38	Tuning constitutive recombinant gene expression in Lactobacillus plantarum. Microbial Cell Factories, 2014, 13, 150.	1.9	54
39	Tnao38, high five and Sf9â€"evaluation of hostâ€"virus interactions in three different insect cell lines: baculovirus production and recombinant protein expression. Biotechnology Letters, 2014, 36, 743-749.	1.1	45
40	Protein O-glucosylation in Lactobacillus buchneri. Glycoconjugate Journal, 2014, 31, 117-131.	1.4	25
41	Minimizing fucosylation in insect cellâ€derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnology Journal, 2014, 9, 1206-1214.	1.8	5
42	Identification of microRNAs specific for high producer CHO cell lines using steady-state cultivation. Applied Microbiology and Biotechnology, 2014, 98, 7535-7548.	1.7	29
43	One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine, 2014, 32, 355-362.	1.7	59
44	The passive strategy: Increasing the force in the battle against influenza. Biotechnology Journal, 2014, 9, 1476-1477.	1.8	1
45	Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. Journal of Biotechnology, 2013, 167, 334-343.	1.9	102
46	Expression and characterization of the first snail-derived UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Glycoconjugate Journal, 2013, 30, 825-833.	1.4	10
47	Purification of infective baculoviruses by monoliths. Journal of Chromatography A, 2013, 1290, 36-45.	1.8	37
48	MultiBac turns sweet. Bioengineered, 2013, 4, 78-83.	1.4	29
49	Whole genome sequencing improves estimation of nuclear DNA content of Chinese hamster ovary cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83, 893-895.	1.1	4
50	Development of a Cost-Effective Method for Capripoxvirus Genotyping Using Snapback Primer and dsDNA Intercalating Dye. PLoS ONE, 2013, 8, e75971.	1.1	45
51	Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. Journal of Biotechnology, 2012, 161, 153-166.	1.9	85
52	"Direct cloning in Lactobacillus plantarum: Electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete― Microbial Cell Factories, 2012, 11, 141.	1.9	47
53	Plasmid DNA Size Does Affect Nonviral Gene Delivery Efficiency in Stem Cells. Cellular Reprogramming, 2012, 14, 130-137.	0.5	46
54	SweetBac: A New Approach for the Production of Mammalianised Glycoproteins in Insect Cells. PLoS ONE, 2012, 7, e34226.	1.1	73

#	Article	IF	Citations
55	Lactobacillus plantarum and Lactobacillus buchneri as Expression Systems: Evaluation of Different Origins of Replication for the Design of Suitable Shuttle Vectors. Molecular Biotechnology, 2012, 52, 40-48.	1.3	27
56	Sequence analysis and characterization of two cryptic plasmids derived from Lactobacillus buchneri CD034. Plasmid, 2011, 66, 159-168.	0.4	23
57	An aminotransferase from bacterium ATCC 55552 deaminates hydrolyzed fumonisin B1. Biodegradation, 2011, 22, 25-30.	1.5	31
58	Insect cells for antibody production: Evaluation of an efficient alternative. Journal of Biotechnology, 2011, 153, 160-166.	1.9	31
59	Swineâ€origin pandemic H1N1 influenza virusâ€like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice. Biotechnology Journal, 2010, 5, 17-23.	1.8	35
60	Trichoplusia ni cells (High FiveTM) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Molecular Biotechnology, 2010, 45, 226-234.	1.3	109
61	Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. Journal of Virological Methods, 2010, 167, 17-22.	1.0	24
62	Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1. Microbial Cell Factories, 2010, 9, 62.	1.9	37
63	Plasmidâ€free T7â€based <i>Escherichia coli</i> expression systems. Biotechnology and Bioengineering, 2010, 105, 786-794.	1.7	53
64	Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. Journal of Biotechnology, 2010, 145, 120-129.	1.9	111
65	Marker-free plasmids for gene therapeutic applicationsâ€"Lack of antibiotic resistance gene substantially improves the manufacturing process. Journal of Biotechnology, 2010, 146, 130-137.	1.9	55
66	Baculovirus for Eukaryotic Protein Display. Current Gene Therapy, 2010, 10, 195-200.	0.9	41
67	Baculovirus-Based Display and Gene Delivery Systems: Figure 1 Cold Spring Harbor Protocols, 2010, 2010, pdb.top72.	0.2	11
68	Alternative influenza vaccines made by insect cells. Trends in Molecular Medicine, 2010, 16, 313-320.	3.5	48
69	Monitoring Baculovirus-Mediated Efficiency of Gene Delivery. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5397.	0.2	6
70	Determination of Recombinant Baculovirus Display Viral Titer. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5394.	0.2	7
71	Immunofluorescence Analysis of Baculovirus-Displayed Viral Proteins on Infected Insect Cells. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5395.	0.2	6
72	Creation of Baculovirus Display Libraries: Figure 1 Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5393.	0.2	7

#	Article	IF	CITATIONS
73	Immunoelectron Microscopy Analysis of Recombinant Baculovirus Display Viruses. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5396-pdb.prot5396.	0.2	6
74	Evaluation of the Influenza A Replicon for Transient Expression of Recombinant Proteins in Mammalian Cells. PLoS ONE, 2010, 5, e13265.	1.1	5
7 5	Rational Vector Design for Efficient Non-viral Gene Delivery: Challenges Facing the Use of Plasmid DNA. Molecular Biotechnology, 2008, 39, 97-104.	1.3	56
76	A novel antibiotic free plasmid selection system: Advances in safe and efficient DNA therapy. Biotechnology Journal, 2008, 3, 83-89.	1.8	54
77	RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. Journal of Biotechnology, 2006, 125, 114-126.	1.9	21
78	Improving baculovirus transduction of mammalian cells by surface display of a RGD-motif. Journal of Biotechnology, 2006, 126, 237-240.	1.9	27
79	Using ColE1-derived RNA I for suppression of a bacterially encoded gene: implication for a novel plasmid addiction system. Biotechnology Journal, 2006, 1, 675-681.	1.8	21
80	Virus-Engineered Colloidal Particles—A Surface Display System. Angewandte Chemie - International Edition, 2006, 45, 784-789.	7.2	46
81	Virus-Coated Layer-by-Layer Colloids as a Multiplex Suspension Array for the Detection and Quantification of Virus-Specific Antibodies. Clinical Chemistry, 2006, 52, 1575-1583.	1.5	31
82	Improved Display of Synthetic IgG-Binding Domains on the Baculovirus Surface. Technology in Cancer Research and Treatment, 2004, 3, 77-84.	0.8	31
83	Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells. Protein Expression and Purification, 2004, 38, 17-23.	0.6	61
84	Generation of recombinant influenza virus using baculovirus delivery vector. Journal of Virological Methods, 2003, 110, 111-114.	1.0	12
85	Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. Briefings in Functional Genomics & Proteomics, 2003, 2, 244-253.	3.8	50
86	Impact of targeted vector design on ColE1 plasmid replication. Trends in Biotechnology, 2002, 20, 257-260.	4.9	34
87	Age-related alterations in the protein expression profile of C57BL/6J mouse pituitaries. Experimental Gerontology, 2002, 37, 1451-1460.	1.2	17
88	Stabilizing plasmid copy number to improve recombinant protein production. Biotechnology and Bioengineering, 2002, 77, 142-147.	1.7	63
89	Altering the surface properties of baculovirus Autographa californica NPV by insertional mutagenesis of the envelope protein gp64. FEBS Journal, 2002, 269, 4458-4467.	0.2	23
90	Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends in Biotechnology, 2001, 19, 231-236.	4.9	98

#	Article	IF	CITATIONS
91	Direct cloning into theAutographs californicanuclear polyhedrosis virus for generation of recombinant baculoviruses. Nucleic Acids Research, 1994, 22, 2855-2856.	6.5	68
92	Hairpin Loop Structure at the Termini of the Chlorella Virus PBCV-1 Genome. Virology, 1994, 202, 1079-1082.	1.1	36
93	DNA sequencing of four bases using three lanes. Nucleic Acids Research, 1992, 20, 1345-1348.	6.5	20
94	The DNA polymerase gene from chlorella viruses PBCV-1 and NY-2A contains an intron with nuclear splicing sequences. Virology, 1992, 188, 721-731.	1.1	49
95	Cloning and sequencing the cytosine methyltransferase gene M.CviJI from Chlorella virus IL-3A. Virology, 1990, 176, 16-24.	1.1	32
96	Stable Sf9 cell pools as a system for rapid HIV â€1 virusâ€like particle production. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	4