Ben I Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4550874/publications.pdf

Version: 2024-02-01

117	12,593	51	108
papers	citations	h-index	g-index
118	118	118	13904
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Changing hydroclimate dynamics and the 19th to 20th century wetting trend in the English Channel region of northwest Europe. Climate Dynamics, 2022, 58, 1539-1553.	1.7	O
2	Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nature Climate Change, 2022, 12, 232-234.	8.1	239
3	Future Climate Change Under SSP Emission Scenarios With GISSâ€E2.1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	22
4	Growing impact of wildfire on western US water supply. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	46
5	New directions in tropical phenology. Trends in Ecology and Evolution, 2022, 37, 683-693.	4.2	16
6	Climate change reshapes the drivers of false spring risk across European trees. New Phytologist, 2021, 229, 323-334.	3.5	12
7	Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nature Climate Change, 2021, 11, 38-44.	8.1	138
8	Treeâ€Ring Reconstruction of the Atmospheric Ridging Feature That Causes Flash Drought in the Central United States Since 1500. Geophysical Research Letters, 2021, 48, e2020GL091271.	1.5	7
9	Tree Rings and Observations Suggest No Stable Cycles in Sierra Nevada Coolâ€ 5 eason Precipitation. Water Resources Research, 2021, 57, e2020WR028599.	1.7	16
10	Disentangling the Regional Climate Impacts of Competing Vegetation Responses to Elevated Atmospheric CO 2. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034108.	1.2	6
11	Projected Changes to Hydroclimate Seasonality in the Continental United States. Earth's Future, 2021, 9, e2021EF002019.	2.4	14
12	Uncertainties, Limits, and Benefits of Climate Change Mitigation for Soil Moisture Drought in Southwestern North America. Earth's Future, 2021, 9, e2021EF002014.	2.4	30
13	Moisture and temperature influences on nonlinear vegetation trends in Serengeti National Park. Environmental Research Letters, 2021, 16, 094049.	2.2	3
14	Placing the east-west North American aridity gradient in a multi-century context. Environmental Research Letters, 2021, 16, 114043.	2.2	6
15	Unprecedented Drought Challenges for Texas Water Resources in a Changing Climate: What Do Researchers and Stakeholders Need to Know?. Earth's Future, 2020, 8, e2020EF001552.	2.4	38
16	Seven centuries of reconstructed Brahmaputra River discharge demonstrate underestimated high discharge and flood hazard frequency. Nature Communications, 2020, 11, 6017.	5.8	58
17	A quantitative hydroclimatic context for the European Great Famine of $1315 \hat{a} \in 1317$. Communications Earth & Environment, 2020, 1, .	2.6	3
18	GISSâ€E2.1: Configurations and Climatology. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002025.	1.3	234

#	Article	IF	CITATIONS
19	Seasonality of biological and physical systems as indicators of climatic variation and change. Climatic Change, 2020, 163, 1755-1771.	1.7	9
20	Divergent Regional Climate Consequences of Maintaining Current Irrigation Rates in the 21st Century. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031814.	1.2	17
21	Twentyâ€First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth's Future, 2020, 8, e2019EF001461.	2.4	435
22	Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 2020, 368, 314-318.	6.0	527
23	Effect of irrigation on humid heat extremes. Environmental Research Letters, 2020, 15, 094010.	2.2	33
24	Dynamics, Variability, and Change in Seasonal Precipitation Reconstructions for North America. Journal of Climate, 2020, 33, 3173-3195.	1.2	58
25	Oceanic and radiative forcing of medieval megadroughts in the American Southwest. Science Advances, 2019, 5, eaax0087.	4.7	45
26	Coupled Modes of North Atlantic Oceanâ€Atmosphere Variability and the Onset of the Little Ice Age. Geophysical Research Letters, 2019, 46, 12417-12426.	1.5	10
27	Dynamics and Variability of the Spring Dry Season in the United States Southwest as Observed in AmeriFlux and NLDAS-2 Data. Journal of Hydrometeorology, 2019, 20, 1081-1102.	0.7	4
28	Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18848-18853.	3.3	283
29	Pacific Ocean Forcing and Atmospheric Variability Are the Dominant Causes of Spatially Widespread Droughts in the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2507-2524.	1.2	10
30	Climate Change Amplification of Natural Drought Variability: The Historic Mid-Twentieth-Century North American Drought in a Warmer World. Journal of Climate, 2019, 32, 5417-5436.	1.2	23
31	A double bootstrap approach to Superposed Epoch Analysis to evaluate response uncertainty. Dendrochronologia, 2019, 55, 119-124.	1.0	51
32	Twentieth-century hydroclimate changes consistent with human influence. Nature, 2019, 569, 59-65.	13.7	192
33	20,000 years of societal vulnerability and adaptation to climate change in southwest Asia. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1330.	2.8	30
34	Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nature Geoscience, 2019, 12, 983-988.	5.4	132
35	The Sensitivity of Land–Atmosphere Coupling to Modern Agriculture in the Northern Midlatitudes. Journal of Climate, 2019, 32, 465-484.	1.2	5
36	Investigating the Causes of Increased Twentieth-Century Fall Precipitation over the Southeastern United States. Journal of Climate, 2019, 32, 575-590.	1.2	41

#	Article	IF	CITATIONS
37	A Robust Null Hypothesis for the Potential Causes of Megadrought in Western North America. Journal of Climate, 2018, 31, 3-24.	1.2	47
38	Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4093-4098.	3.3	179
39	Revisiting the Leading Drivers of Pacific Coastal Drought Variability in the Contiguous United States. Journal of Climate, 2018, 31, 25-43.	1.2	27
40	Blue Water Tradeâ€Offs With Vegetation in a CO ₂ â€Enriched Climate. Geophysical Research Letters, 2018, 45, 3115-3125.	1.5	46
41	Cold Tropical Pacific Sea Surface Temperatures During the Late Sixteenthâ€Century North American Megadrought. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,307.	1.2	15
42	Exacerbation of the 2013–2016 Panâ€Caribbean Drought by Anthropogenic Warming. Geophysical Research Letters, 2018, 45, 10619-10626.	1.5	39
43	Climate and the Global Famine of 1876–78. Journal of Climate, 2018, 31, 9445-9467.	1.2	55
44	Distinct Influences of Land Cover and Land Management on Seasonal Climate. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12017-12039.	1.2	26
45	A reconstruction of global hydroclimate and dynamical variables over the Common Era. Scientific Data, 2018, 5, 180086.	2.4	114
46	Six Centuries of Upper Indus Basin Streamflow Variability and Its Climatic Drivers. Water Resources Research, 2018, 54, 5687-5701.	1.7	40
47	Climate Change and Drought: From Past to Future. Current Climate Change Reports, 2018, 4, 164-179.	2.8	304
48	Observed and Projected Changes to the Precipitation Annual Cycle. Journal of Climate, 2017, 30, 4983-4995.	1.2	46
49	Climate controls on tree growth in the Western Mediterranean. Holocene, 2017, 27, 1429-1442.	0.9	25
50	European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium. Geophysical Research Letters, 2017, 44, 5104-5112.	1.5	51
51	Precipitation, Temperature, and Teleconnection Signals across the Combined North American, Monsoon Asia, and Old World Drought Atlases. Journal of Climate, 2017, 30, 7141-7155.	1.2	46
52	Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity. Journal of Climate, 2017, 30, 6883-6904.	1.2	20
53	Covariability of climate and streamflow in the Upper Rio Grande from interannual to interdecadal timescales. Journal of Hydrology: Regional Studies, 2017, 13, 58-71.	1.0	10
54	The 2016 Southeastern U.S. Drought: An Extreme Departure From Centennial Wetting and Cooling. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10888-10905.	1.2	48

#	Article	IF	CITATIONS
55	Reply to Comment on â€^Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation'. Environmental Research Letters, 2017, 12, 068002.	2.2	0
56	The Curious Case of Projected Twenty-First-Century Drying but Greening in the American West. Journal of Climate, 2017, 30, 8689-8710.	1.2	74
57	The plant phenology monitoring design for The National Ecological Observatory Network. Ecosphere, 2016, 7, e01303.	1.0	72
58	North American megadroughts in the Common Era: reconstructions and simulations. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 411-432.	3.6	123
59	Spatiotemporal drought variability in the Mediterranean over the last 900Âyears. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2060-2074.	1.2	284
60	The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quaternary Science Reviews, 2016, 149, 34-60.	1.4	196
61	Internal oceanâ€atmosphere variability drives megadroughts in Western North America. Geophysical Research Letters, 2016, 43, 9886-9894.	1.5	56
62	The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12820-12838.	1.2	24
63	Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Science Advances, 2016, 2, e1600873.	4.7	168
64	Climate change decouples drought from early wine grape harvests in France. Nature Climate Change, 2016, 6, 715-719.	8.1	78
65	Ocean–atmosphere interactions modulate irrigation's climate impacts. Earth System Dynamics, 2016, 7, 863-876.	2.7	15
66	Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE) Tj ETQq0 0 0 rg 124002.	BT /Overlo 2.2	ck 10 Tf 50 3 121
67	Winterâ€toâ€summer precipitation phasing in southwestern North America: A multicentury perspective from paleoclimatic modelâ€data comparisons. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8052-8064.	1.2	23
68	Contribution of anthropogenic warming to California drought during 2012–2014. Geophysical Research Letters, 2015, 42, 6819-6828.	1.5	464
69	Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances, 2015, 1, e1400082.	4.7	1,092
70	Bridging Past and Future Climate across Paleoclimatic Reconstructions, Observations, and Models: A Hydroclimate Case Study*. Journal of Climate, 2015, 28, 3212-3231.	1.2	40
71	Are Simulated Megadroughts in the North American Southwest Forced?*. Journal of Climate, 2015, 28, 124-142.	1.2	68
72	Assessing the evolving fragility of the global food system. Environmental Research Letters, 2015, 10, 024007.	2.2	248

#	Article	IF	CITATIONS
73	North American Pancontinental Droughts in Model Simulations of the Last Millennium*. Journal of Climate, 2015, 28, 2025-2043.	1.2	46
74	Irrigation as an historical climate forcing. Climate Dynamics, 2015, 44, 1715-1730.	1.7	103
75	The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecological Monographs, 2014, 84, 599-620.	2.4	140
76	Pan-Continental Droughts in North America over the Last Millennium*. Journal of Climate, 2014, 27, 383-397.	1.2	155
77	The response of the South Asian Summer Monsoon circulation to intensified irrigation in global climate model simulations. Climate Dynamics, 2014, 42, 21-36.	1.7	47
78	Global warming and 21st century drying. Climate Dynamics, 2014, 43, 2607-2627.	1.7	782
79	Progress towards an interdisciplinary science of plant phenology: building predictions across space, time and species diversity. New Phytologist, 2014, 201, 1156-1162.	3.5	130
80	The worst North American drought year of the last millennium: 1934. Geophysical Research Letters, 2014, 41, 7298-7305.	1.5	86
81	Phylogenetic conservatism in plant phenology. Journal of Ecology, 2013, 101, 1520-1530.	1.9	182
82	Clouds and temperature drive dynamic changes in tropical flower production. Nature Climate Change, 2013, 3, 838-842.	8.1	63
83	Temperatureâ€dependent shifts in phenology contribute to the success of exotic species with climate change. American Journal of Botany, 2013, 100, 1407-1421.	0.8	140
84	Paleoclimate histories improve access and sustainability in index insurance programs. Global Environmental Change, 2013, 23, 774-781.	3.6	13
85	Stationarity of the tropical pacific teleconnection to North America in CMIP5/PMIP3 model simulations. Geophysical Research Letters, 2013, 40, 4927-4932.	1.5	68
86	Megadroughts in Southwestern North America in ECHO-G Millennial Simulations and Their Comparison to Proxy Drought Reconstructions*. Journal of Climate, 2013, 26, 7635-7649.	1.2	55
87	Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa. American Journal of Botany, 2013, 100, 1381-1397.	0.8	54
88	Intensification of North American Megadroughts through Surface and Dust Aerosol Forcing*. Journal of Climate, 2013, 26, 4414-4430.	1.2	44
89	The response of the North American Monsoon to increased greenhouse gas forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1690-1699.	1.2	156
90	Phenological versus meteorological controls on landâ€atmosphere water and carbon fluxes. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 14-29.	1.3	45

#	Article	IF	Citations
91	A Global Assessment of Long-Term Greening and Browning Trends in Pasture Lands Using the GIMMS LAI3g Dataset. Remote Sensing, 2013, 5, 2492-2512.	1.8	35
92	Dust Bowl. Encyclopedia of Earth Sciences Series, 2013, , 197-201.	0.1	0
93	Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9000-9005.	3.3	318
94	Preâ€Columbian deforestation as an amplifier of drought in Mesoamerica. Geophysical Research Letters, 2012, 39, .	1.5	59
95	Snow cover and precipitation impacts on dry season streamflow in the Lower Mekong Basin. Journal of Geophysical Research, 2012, 117 , .	3.3	16
96	Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. Ecosystems, 2012, 15, 1283-1294.	1.6	107
97	Warming experiments underpredict plant phenological responses to climate change. Nature, 2012, 485, 494-497.	13.7	772
98	Influences of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the timing of the North American spring. International Journal of Climatology, 2012, 32, 2301-2310.	1.5	52
99	Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Climate Dynamics, 2011, 37, 1587-1600.	1.7	95
100	Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 2011, 17, 3633-3643.	4.2	314
101	Repurposing climate reconstructions for drought prediction in Southeast Asia. Climatic Change, 2011, 106, 691-698.	1.7	15
102	Atmospheric circulation anomalies during two persistent north american droughts: 1932–1939 and 1948–1957. Climate Dynamics, 2011, 36, 2339-2355.	1.7	70
103	Forced and unforced variability of twentieth century North American droughts and pluvials. Climate Dynamics, 2011, 37, 1097-1110.	1.7	44
104	On the Causes and Dynamics of the Early Twentieth-Century North American Pluvial. Journal of Climate, 2011, 24, 5043-5060.	1.2	46
105	Ecological forecasting under climatic data uncertainty: a case study in phenological modeling. Environmental Research Letters, 2010, 5, 044014.	2.2	22
106	A Homogeneous Record (1896–2006) of Daily Weather and Climate at Mohonk Lake, New York*. Journal of Applied Meteorology and Climatology, 2010, 49, 544-555.	0.6	6
107	Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophysical Research Letters, 2010, 37, .	1.5	137
108	Effects of irrigation on global climate during the 20th century. Journal of Geophysical Research, 2010, 115, .	3.3	245

#	Article	IF	CITATIONS
109	Amplification of the North American "Dust Bowl―drought through human-induced land degradation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4997-5001.	3.3	284
110	Effects of global irrigation on the near-surface climate. Climate Dynamics, 2009, 33, 159-175.	1.7	314
111	Objective determination of monsoon season onset, withdrawal, and length. Journal of Geophysical Research, 2009, 114, .	3.3	54
112	Rapid vegetation responses and feedbacks amplify climate model response to snow cover changes. Climate Dynamics, 2008, 30, 391-406.	1.7	17
113	The thermoinsulation effect of snow cover within a climate model. Climate Dynamics, 2008, 31, 107-124.	1.7	32
114	A crossâ€ŧaxa phenological dataset from Mohonk Lake, NY and its relationship to climate. International Journal of Climatology, 2008, 28, 1369-1383.	1.5	30
115	Dust and sea surface temperature forcing of the 1930s "Dust Bowl―drought. Geophysical Research Letters, 2008, 35, .	1.5	66
116	The North Atlantic Oscillation and regional phenology prediction over Europe. Global Change Biology, 2005, 11, 919-926.	4.2	43
117	Statistical simulation of the influence of the NAO on European winter surface temperatures: Applications to phenological modeling. Journal of Geophysical Research, 2004, 109, .	3.3	6