
Veronica Galvan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4550839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Omicron variant of the SARS-CoV-2: a quest to define the consequences of its high mutational load. GeroScience, 2022, 44, 53-56.	4.6	52
2	Brain cellular senescence in mouse models of Alzheimer's disease. GeroScience, 2022, 44, 1157-1168.	4.6	16
3	Editorial: Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. GeroScience, 2022, 44, 57-61.	4.6	3
4	Genetic and pharmacologic proteasome augmentation ameliorates Alzheimer's-like pathology in mouse and fly APP overexpression models. Science Advances, 2022, 8, .	10.3	20
5	Primary neuron and astrocyte cultures from postnatal Callithrix jacchus: a non-human primate in vitro model for research in neuroscience, nervous system aging, and neurological diseases of aging. GeroScience, 2021, 43, 115-124.	4.6	1
6	mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease. Journal of Neuroscience, 2021, 41, 4305-4320.	3.6	27
7	mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell, 2020, 19, e13057.	6.7	52
8	An evaluation of the SARS-CoV-2 epidemic 16 days after the end of social confinement in Hungary. GeroScience, 2020, 42, 1221-1223.	4.6	2
9	Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease. GeroScience, 2020, 42, 1685-1698.	4.6	33
10	Obesity in Aging Exacerbates Neuroinflammation, Dysregulating Synaptic Function-Related Genes and Altering Eicosanoid Synthesis in the Mouse Hippocampus: Potential Role in Impaired Synaptic Plasticity and Cognitive Decline. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 290-298.	3.6	72
11	Rapamycin and Alzheimer's disease: Time for a clinical trial?. Science Translational Medicine, 2019, 11, .	12.4	121
12	mTOR in cerebrovascular disease. Aging, 2019, 11, 1331-1332.	3.1	3
13	Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection. Cell, 2018, 172, 952-965.e18.	28.9	92
14	A Perfect sTORm: The Role of the Mammalian Target of Rapamycin (mTOR) in Cerebrovascular Dysfunction of Alzheimer's Disease: A Mini-Review. Gerontology, 2018, 64, 205-211.	2.8	30
15	mTOR drives cerebral blood flow and memory deficits in LDLR ^{â^'/â^'} mice modeling atherosclerosis and vascular cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 58-74.	4.3	35
16	Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H693-H703.	3.2	89
17	Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 217-226.	4.3	126
18	Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. GeroScience, 2017, 39, 465-473.	4.6	70

#	Article	IF	CITATIONS
19	Age-related impairment of metabovascular coupling during cortical spreading depolarizations. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1209-H1212.	3.2	Ο
20	Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. GeroScience, 2017, 39, 359-372.	4.6	78
21	Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer's Disease and Related Tauopathies. , 2017, 8, 257.		82
22	Glial alterations from early to late stages in a model of <scp>A</scp> lzheimer's disease: Evidence of autophagy involvement in <scp>A</scp> l² internalization. Hippocampus, 2016, 26, 194-210.	1.9	64
23	Netrin-1 Interrupts Amyloid-β Amplification, Increases sAβPPα in vitro and in vivo, and Improves Cognition in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 52, 223-242.	2.6	22
24	Polyphosphate: A Conserved Modifier of Amyloidogenic Processes. Molecular Cell, 2016, 63, 768-780.	9.7	117
25	Vascular mTOR-dependent mechanisms linking the control of aging to Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 992-1007.	3.8	28
26	Chronic <scp>mTOR</scp> inhibition in mice with rapamycin alters <scp>T</scp> , <scp> B</scp> , myeloid, and innate lymphoid cells and gut flora and prolongs life of immuneâ€deficient mice. Aging Cell, 2015, 14, 945-956.	6.7	94
27	How longevity research can lead to therapies for Alzheimer's disease: The rapamycin story. Experimental Gerontology, 2015, 68, 51-58.	2.8	104
28	Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice. Frontiers in Molecular Neuroscience, 2014, 7, 83.	2.9	17
29	Neuronal and glial alterations, increased anxiety, and cognitive impairment before hippocampal amyloid deposition in PDAPP mice, model of Alzheimer's disease. Hippocampus, 2014, 24, 257-269.	1.9	88
30	Overâ€expression of heat shock factor 1 phenocopies the effect of chronic inhibition of <scp>TOR</scp> by rapamycin and is sufficient to ameliorate Alzheimer'sâ€like deficits in mice modeling the disease. Journal of Neurochemistry, 2013, 124, 880-893.	3.9	72
31	Differential Activation of mTOR Complex 1 Signaling in Human Brain with Mild to Severe Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 38, 437-444.	2.6	88
32	Decreased <i>in vitro</i> Mitochondrial Function is Associated with Enhanced Brain Metabolism, Blood Flow, and Memory in Surfl-Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1605-1611.	4.3	35
33	Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease. Experimental Neurology, 2013, 239, 28-37.	4.1	144
34	Chronic Rapamycin Restores Brain Vascular Integrity and Function Through NO Synthase Activation and Improves Memory in Symptomatic Mice Modeling Alzheimer's Disease. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1412-1421.	4.3	181
35	Do Proteomics Analyses Provide Insights into Reduced Oxidative Stress in the Brain of an Alzheimer Disease Transgenic Mouse Model with an M631L Amyloid Precursor Protein Substitution and Thereby the Importance of Amyloid-Beta-Resident Methionine 35 in Alzheimer Disease Pathogenesis?. Antioxidants and Redox Signaling, 2012, 17, 1507-1514.	5.4	22
36	Antioxidants and Redox Signaling, 2012, 17, 1507-1514. Development of a high-throughput screen targeting caspase-8-mediated cleavage of the amyloid precursor protein. Analytical Biochemistry, 2012, 421, 467-476.	2.4	10

#	Article	IF	CITATIONS
37	In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid β-peptide of APP. Free Radical Biology and Medicine, 2010, 48, 136-144.	2.9	157
38	Transplantation of Human Neural Precursor Cells in Matrigel Scaffolding Improves Outcome from Focal Cerebral Ischemia after Delayed Postischemic Treatment in Rats. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 534-544.	4.3	173
39	Importance of the Caspase Cleavage Site in Amyloid-β Protein Precursor. Journal of Alzheimer's Disease, 2010, 22, 57-63.	2.6	28
40	Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-Î ² Levels in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2010, 5, e9979.	2.5	875
41	Reversal of learning deficits in hAPP transgenic mice carrying a mutation at Asp664: A role for early experience. Behavioural Brain Research, 2010, 206, 202-207.	2.2	17
42	Effect of neural precursor proliferation level on neurogenesis in rat brain during aging and after focal ischemia. Neurobiology of Aging, 2009, 30, 299-308.	3.1	33
43	Signal transduction in Alzheimer disease: p21â€activated kinase signaling requires Câ€ŧerminal cleavage of APP at Asp664. Journal of Neurochemistry, 2008, 104, 1065-1080.	3.9	66
44	Long-term prevention of Alzheimer's disease-like behavioral deficits in PDAPP mice carrying a mutation in Asp664. Behavioural Brain Research, 2008, 191, 246-255.	2.2	43
45	Interaction of ASK1 and the β-amyloid precursor protein in a stress-signaling complex. Neurobiology of Disease, 2007, 28, 65-75.	4.4	18
46	Endogenous Neural Stem Cells in the Adult Brain. Journal of NeuroImmune Pharmacology, 2007, 2, 236-242.	4.1	48
47	Neurogenesis in the Adult Brain: Implications for Alzheimers Disease. CNS and Neurological Disorders - Drug Targets, 2007, 6, 303-310.	1.4	51
48	Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Research, 2006, 1115, 186-193.	2.2	63
49	The Role of Vascular Endothelial Growth Factor in Neurogenesis in Adult Brain. Mini-Reviews in Medicinal Chemistry, 2006, 6, 667-669.	2.4	15
50	Deficits in Synaptic Transmission and Learning in Amyloid Precursor Protein (APP) Transgenic Mice Require C-Terminal Cleavage of APP. Journal of Neuroscience, 2006, 26, 13428-13436.	3.6	120
51	Reversal of Alzheimer's-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7130-7135.	7.1	219
52	A pilot proteomic study of amyloid precursor interactors in Alzheimer's disease. Annals of Neurology, 2005, 58, 277-289.	5.3	62
53	Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APP _{Sw,Ind}) mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13363-13367.	7.1	401
54	Tau Phosphorylation in Alzheimer's Disease: Potential Involvement of an APP–MAP Kinase Complex. NeuroMolecular Medicine, 2004, 5, 205-218.	3.4	40

#	Article	IF	CITATIONS
55	Type 1 Insulin-like Growth Factor Receptor (IGF-IR) Signaling Inhibits Apoptosis Signal-regulating Kinase 1 (ASK1). Journal of Biological Chemistry, 2003, 278, 13325-13332.	3.4	77
56	Caspase cleavage of members of the amyloid precursor family of proteins. Journal of Neurochemistry, 2002, 82, 283-294.	3.9	87
57	Glycoprotein D or J Delivered in transBlocks Apoptosis in SK-N-SH Cells Induced by a Herpes Simplex Virus 1 Mutant Lacking Intact Genes Expressing Both Clycoproteins. Journal of Virology, 2000, 74, 11782-11791.	3.4	146
58	Bcl-2 Blocks a Caspase-Dependent Pathway of Apoptosis Activated by Herpes Simplex Virus 1 Infection in HEp-2 Cells. Journal of Virology, 2000, 74, 1931-1938.	3.4	59
59	Herpes Simplex Virus 1 Blocks Caspase-3-Independent and Caspase-Dependent Pathways to Cell Death. Journal of Virology, 1999, 73, 3219-3226.	3.4	80