Zhiguo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4550736/publications.pdf

Version: 2024-02-01

17	1,132	14	18
papers	citations	h-index	g-index
18	18	18	1730
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nature Reviews Cardiology, 2020, 17, 585-607.	6.1	353
2	Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. Journal of Molecular and Cellular Cardiology, 2014, 77, 42-52.	0.9	157
3	Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy. Diabetes, 2017, 66, 529-542.	0.3	137
4	Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism: Clinical and Experimental, 2020, 102, 154002.	1.5	78
5	Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function. Toxicology and Applied Pharmacology, 2014, 279, 198-210.	1.3	73
6	Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2. Free Radical Biology and Medicine, 2015, 89, 431-442.	1.3	73
7	Sulforaphane Attenuation of Type 2 Diabetes-Induced Aortic Damage Was Associated with the Upregulation of Nrf2 Expression and Function. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-11.	1.9	61
8	Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling. Toxicology Letters, 2016, 258, 134-146.	0.4	31
9	Zinc delays the progression of obesityâ€related glomerulopathy in mice via downâ€regulating <scp>P</scp> 38 <scp>MAPK</scp> â€mediated inflammation. Obesity, 2016, 24, 1244-1256.	1.5	23
10	4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress. Toxicology and Applied Pharmacology, 2019, 370, 93-105.	1.3	23
11	Extracts of Magnolia Species-Induced Prevention of Diabetic Complications: A Brief Review. International Journal of Molecular Sciences, 2016, 17, 1629.	1.8	22
12	<i>Magnolia</i> Bioactive Constituent 4-O-Methylhonokiol Prevents the Impairment of Cardiac Insulin Signaling and the Cardiac Pathogenesis in High-Fat Diet-Induced Obese Mice. International Journal of Biological Sciences, 2015, 11, 879-891.	2.6	19
13	<i>Magnolia</i> Extract (BL153) Protection of Heart from Lipid Accumulation Caused Cardiac Oxidative Damage, Inflammation, and Cell Death in High-Fat Diet Fed Mice. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1.13 .	1.9	18
14	4â€Oâ€methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPKâ€mediated cardiac lipid metabolism improvement. Journal of Cellular and Molecular Medicine, 2019, 23, 5771-5781.	1.6	17
15	The <i>Magnolia</i> Bioactive Constituent 4-O-Methylhonokiol Protects against High-Fat Diet-Induced Obesity and Systemic Insulin Resistance in Mice. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-10.	1.9	16
16	BL153 Partially Prevents High-Fat Diet Induced Liver Damage Probably via Inhibition of Lipid Accumulation, Inflammation, and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-10.	1.9	14
17	Very Late Stent Thrombosis in Drug-Eluting Stents New Observations and Clinical Implications. Cardiology in Review, 2019, 27, 279-285.	0.6	12