Luca Matteo Martini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4550581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conversion of CH ₄ /CO ₂ by a nanosecond repetitively pulsed discharge. Journal Physics D: Applied Physics, 2016, 49, 075602.	2.8	89
2	Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environmental Pollution, 2017, 231, 845-853.	7.5	57
3	Oxidation of CH4 by CO2 in a dielectric barrier discharge. Chemical Physics Letters, 2014, 593, 55-60.	2.6	53
4	Nanosecond Pulsed Discharge for CO ₂ Conversion: Kinetic Modeling To Elucidate the Chemistry and Improve the Performance. Journal of Physical Chemistry C, 2019, 123, 12104-12116.	3.1	48
5	CO ₂ Hydrogenation by CH ₄ in a Dielectric Barrier Discharge: Catalytic Effects of Nickel and Copper. Plasma Processes and Polymers, 2014, 11, 624-628.	3.0	41
6	Laser induced fluorescence in atmospheric pressure discharges. Plasma Sources Science and Technology, 2015, 24, 034007.	3.1	35
7	Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge. Plasma Chemistry and Plasma Processing, 2018, 38, 707-718.	2.4	33
8	Rate constants of quenching and vibrational relaxation in the OH(\${{A}^{2}}{{ Sigma }^{+}},v=0,1\$), manifold with various colliders. Journal Physics D: Applied Physics, 2017, 50, 114003.	2.8	24
9	The effect of different pulse patterns on the plasma reduction of CO2 for a nanosecond discharge. Journal of CO2 Utilization, 2020, 39, 101157.	6.8	23
10	Plasma Assisted Flame Stabilizationin a Non-Premixed Lean Burner. Energy Procedia, 2015, 82, 410-416.	1.8	21
11	Destruction of dimethyl ether and methyl formate by collisions with He ⁺ . Astronomy and Astrophysics, 2019, 625, A72.	5.1	20
12	Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process. Physical Chemistry Chemical Physics, 2017, 19, 19554-19565.	2.8	19
13	Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO ₂ conversion. Plasma Physics and Controlled Fusion, 2018, 60, 014016.	2.1	18
14	OH Density Measurements by Time-Resolved Broad Band Absorption Spectroscopy in a He-H ₂ O Dielectric Barrier Discharge with Small O ₂ Addition. Plasma Processes and Polymers, 2014, 11, 232-238.	3.0	17
15	CH4 reforming with CO2 in a nanosecond pulsed discharge. The importance of the pulse sequence. Journal of CO2 Utilization, 2021, 49, 101556.	6.8	17
16	The Selective Role of Longâ€Range Forces in the Stereodynamics of Ion–Molecule Reactions: The He ⁺ +Methyl Formate Case From Guidedâ€Ionâ€Beam Experiments. ChemPhysChem, 2018, 19, 51-5	59 ^{2.1}	16
17	Non-thermal plasma in waste composting facilities: From a laboratory-scale experiment to a scaled-up economic model. Journal of Cleaner Production, 2019, 230, 230-240.	9.3	15
18	Temperature evolution in a pulsed CO ₂ –N ₂ glow discharge measured using quantum cascade laser absorption spectroscopy. Plasma Sources Science and Technology, 2020, 29, 065016.	3.1	14

LUCA MATTEO MARTINI

#	Article	IF	CITATIONS
19	Exceeding Equilibrium CO ₂ Conversion by Plasma-Assisted Chemical Looping. ACS Energy Letters, 2022, 7, 1896-1902.	17.4	13
20	Time-resolved optical emission spectroscopy in CO ₂ nanosecond pulsed discharges. Plasma Sources Science and Technology, 2021, 30, 115010.	3.1	11
21	Reactivity of fatty acid methyl esters under atmospheric pressure plasma jet exposure: An experimental and theoretical study. Plasma Processes and Polymers, 2017, 14, 1600254.	3.0	10
22	Progress on laser induced fluorescence in a collisional environment: the case of OH molecules in ns pulsed discharges. Plasma Sources Science and Technology, 2019, 28, 025012.	3.1	10
23	Absolute CO number densities measured using TALIF in a non-thermal plasma environment. Plasma Sources Science and Technology, 2019, 28, 115006.	3.1	9
24	Vibrational quenching by water in a CO2 glow discharge measured using quantum cascade laser absorption spectroscopy. Plasma Sources Science and Technology, 2020, 29, 095017.	3.1	8
25	Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling. Plasma Sources Science and Technology, 2022, 31, 055014.	3.1	8
26	Non-thermal rate constants of quenching and vibrational relaxation in the OH\$left(ight.{extbf{extsf{A}}}^{2}{mathbf{Sigma }}^{+},{oldsymbol{upsilon }}^{prime) Tj ETQq0 0 0 rgBT /Ov	verboock 10	Tf 5 0 457 Td
27	On the determination of the vibrational temperature by optical emission spectroscopy. Plasma Sources Science and Technology, 2022, 31, 077001.	3.1	7
28	A current-carrying coil design with improved liquid cooling arrangement. Review of Scientific Instruments, 2013, 84, 065115.	1.3	5
29	Molecular growth of PAH-like systems induced by oxygen species: experimental and theoretical study of the reaction of naphthalene with HO (² î _{3/2}), O (³ P), and O ₂ (³ î£âr'g). RSC Advances, 2015, 5, 38581-38590.	3.6	5
30	Innovative remote plasma source for atomic layer deposition for GaN devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	5
31	Absolute OH density measurements in a CO ₂ –H ₂ O glow discharge by laser-induced fluorescence spectroscopy. Plasma Sources Science and Technology, 2022, 31, 055002. 	3.1	3
32	Corrigendum on â€~OH Density Measurements by Time-Resolved Broad Band Absorption Spectroscopy in a He-H ₂ O Dielectric Barrier Discharge With Small O ₂ Addition'. Plasma Processes and Polymers, 2016, 13, 298-299.	3.0	1