Xiangjun Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4550428/publications.pdf

Version: 2024-02-01

1040056 1058476 20 248 9 14 citations h-index g-index papers 22 22 22 209 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial gene expression analysis reveals aberrant transcription of cox3 in Gossypium barbadense CMS line H276A. Development Genes and Evolution, 2022, 232, 15-23.	0.9	2
2	Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. Frontiers in Plant Science, 2022, 13, 843994.	3.6	22
3	Integrated Methylome and Transcriptome Analysis Widen the Knowledge of Cytoplasmic Male Sterility in Cotton (Gossypium barbadense L.). Frontiers in Plant Science, 2022, 13, 770098.	3.6	8
4	Identification of differentially expressed genes and pathways in isonuclear kenaf genotypes under salt stress. Physiologia Plantarum, 2021, 173, 1295-1308.	5.2	10
5	Transcriptome and MiRNAomics Analyses Identify Genes Associated with Cytoplasmic Male Sterility in Cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences, 2021, 22, 4684.	4.1	14
6	Physio-biochemical and proteomic mechanisms of coronatine induced potassium stress tolerance in xylem sap of cotton. Industrial Crops and Products, 2021, 173, 114094.	5.2	4
7	Identification of chalcone synthase genes and their expression patterns reveal pollen abortion in cotton. Saudi Journal of Biological Sciences, 2020, 27, 3691-3699.	3.8	15
8	Comparative analysis of mitochondrial genome and expression variation between UG93A and UG93B reveals a candidate gene related to cytoplasmic male sterility in kenaf. Industrial Crops and Products, 2020, 152, 112502.	5.2	8
9	Discovery of Four Novel ORFs Responsible for Cytoplasmic Male Sterility (CMS) in Cotton (Gossypium) Tj ETQq1 Agronomy, 2020, 10, 765.	1 0.78431 3.0	4 rgBT /Over 10
10	Deviant DNA methylation play a key role in the pollen abortion of Gossypium barbadense L. cytoplasmic male sterility. Industrial Crops and Products, 2020, 154, 112622.	5.2	7
11	Harnessing perennial and indeterminant growth habits for ratoon cotton (<i>Gossypium</i> spp.) cropping. Ecosystem Health and Sustainability, 2020, 6, .	3.1	6
12	Planting Density Induced Changes in Cotton Biomass Yield, Fiber Quality, and Phosphorus Distribution under Beta Growth Model. Agronomy, 2019, 9, 500.	3.0	12
13	RNA editing analysis of ATP synthase genes in the cotton cytoplasmic male sterile line H276A. Biological Research, 2019, 52, 6.	3.4	11
14	Changes in Leaf Structural and Functional Characteristics when Changing Planting Density at Different Growth Stages Alters Cotton Lint Yield under a New Planting Model. Agronomy, 2019, 9, 859.	3.0	11
15	Comparative Transcriptome Analysis between a Novel Allohexaploid Cotton Progeny CMS Line LD6A and Its Maintainer Line LD6B. International Journal of Molecular Sciences, 2019, 20, 6127.	4.1	10
16	Complete sequence of kenaf (Hibiscus cannabinus) mitochondrial genome and comparative analysis with the mitochondrial genomes of other plants. Scientific Reports, 2018, 8, 12714.	3.3	43
17			
1/	Candidate Reference Genes Selection and Application for RT-qPCR Analysis in Kenaf with Cytoplasmic Male Sterility Background. Frontiers in Plant Science, 2017, 8, 1520.	3.6	10

#	Article	IF	CITATIONS
19	Expression of kenaf mitochondrial chimeric genesHM184causes male sterility in transgenic tobacco plants. Mitochondrial DNA, 2015, 26, 495-500.	0.6	2

A comparative study of the atp9 gene between a cytoplasmic male sterile line and its maintainer line and further development of a molecular marker specific for male sterile cytoplasm in kenaf (Hibiscus) Tj ETQq0 0 0 2gBT /Ove1lock 10 Tf