
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4550316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
2	An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017, 543, 199-204.	13.7	898
3	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	2.4	195
4	Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood, 2014, 123, e58-e67.	0.6	175
5	Mast cells as initiators of immunity and host defense. Experimental Dermatology, 2001, 10, 1-10.	1.4	159
6	Human Skin Mast Cells Express H2 and H4, but not H3 Receptors. Journal of Investigative Dermatology, 2004, 123, 116-123.	0.3	123
7	Targeting the vitamin D receptor inhibits the B cellâ€dependent allergic immune response. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 540-548.	2.7	104
8	Ramipril and metoprolol intake aggravate human and murine anaphylaxis: Evidence for direct mast cell priming. Journal of Allergy and Clinical Immunology, 2015, 135, 491-499.	1.5	98
9	Mast cell lines HMCâ€1 and LAD2 in comparison with mature human skin mast cells – drastically reduced levels of tryptase and chymase in mast cell lines. Experimental Dermatology, 2010, 19, 845-847.	1.4	91
10	Interleukin-17A Promotes IgE Production in Human B Cells. Journal of Investigative Dermatology, 2010, 130, 2621-2628.	0.3	91
11	An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell, 2019, 179, 417-431.e19.	13.5	76
12	Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nature Communications, 2020, 11, 402.	5.8	76
13	Mas-related G protein–coupled receptor X2 and its activators in dermatologic allergies. Journal of Allergy and Clinical Immunology, 2021, 147, 456-469.	1.5	70
14	Allergic Fcε <scp>RI</scp> ―and pseudoâ€allergic <scp>MRGPRX</scp> 2â€triggered mast cell activation routes are independent and inversely regulated by <scp>SCF</scp> . Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 256-260.	2.7	68
15	Comparative cytokine profile of human skin mast cells from two compartments-strong resemblance with monocytes at baseline but induction of IL-5 by IL-4 priming. Journal of Leukocyte Biology, 2004, 75, 244-252.	1.5	65
16	Evidence for a restricted rather than generalized stimulatory response of skin-derived human mast cells to substance P. Journal of Neuroimmunology, 2005, 163, 92-101.	1.1	58
17	Human Leukaemic (HMCâ€1) and Normal Skin Mast Cells Express β2â€Integrins: Characterization of β2â€Integrins and ICAMâ€1 on HMCâ€1 Cells. Scandinavian Journal of Immunology, 1997, 45, 471-481.	1.3	45
18	Bivalent Effect of UV Light on Human Skin Mast Cells—Low-Level Mediator Release at Baseline but Potent Suppression Upon Mast Cell Triggering. Journal of Investigative Dermatology, 2005, 124, 453-456.	0.3	43

#	Article	IF	CITATIONS
19	IL-33 and MRGPRX2-Triggered Activation of Human Skin Mast Cells—Elimination of Receptor Expression on Chronic Exposure, but Reinforced Degranulation on Acute Priming. Cells, 2019, 8, 341.	1.8	42
20	Vitamin D Receptor Activation Improves Allergen-Triggered Eczema in Mice. Journal of Investigative Dermatology, 2012, 132, 330-336.	0.3	40
21	Yin-Yang of IL-33 in Human Skin Mast Cells: Reduced Degranulation, but Augmented Histamine Synthesis through p38 Activation. Journal of Investigative Dermatology, 2019, 139, 1516-1525.e3.	0.3	39
22	MRGPRX2 Is the Codeine Receptor of Human Skin Mast Cells: Desensitization through β-Arrestin and Lack of Correlation with the FclµRI Pathway. Journal of Investigative Dermatology, 2021, 141, 1286-1296.e4.	0.3	39
23	A subclone (5C6) of the human mast cell line HMC-1 represents a more differentiated phenotype than the original cell line. Archives of Dermatological Research, 1996, 288, 778-782.	1.1	38
24	Phenotypic variability in human skin mast cells. Experimental Dermatology, 2016, 25, 434-439.	1.4	37
25	MRGPRX2 signals its importance in cutaneous mast cell biology: Does MRGPRX2 connect mast cells and atopic dermatitis?. Experimental Dermatology, 2020, 29, 1104-1111.	1.4	35
26	Cytokines Stimulated by IL-33 in Human Skin Mast Cells: Involvement of NF-κB and p38 at Distinct Levels and Potent Co-Operation with FcεRI and MRGPRX2. International Journal of Molecular Sciences, 2021, 22, 3580.	1.8	33
27	The transcription factor profile of human mast cells in comparison with monocytes and granulocytes. Cellular and Molecular Life Sciences, 2005, 62, 214-226.	2.4	32
28	Skin mast cells develop nonâ€synchronized changes in typical lineage characteristics upon culture. Experimental Dermatology, 2014, 23, 933-935.	1.4	32
29	Serum levels of 9α,11β-PGF 2 and cysteinyl leukotrienes are useful biomarkers of anaphylaxis. Journal of Allergy and Clinical Immunology, 2016, 137, 312-314.e7.	1.5	32
30	PGE2 deficiency predisposes to anaphylaxis by causing mast cell hyperresponsiveness. Journal of Allergy and Clinical Immunology, 2020, 146, 1387-1396.e13.	1.5	31
31	Retinoic Acid Negatively Impacts Proliferation and MCTC Specific Attributes of Human Skin Derived Mast Cells, but Reinforces Allergic Stimulability. International Journal of Molecular Sciences, 2017, 18, 525.	1.8	30
32	Long-Term Cultured Human Skin Mast Cells Are Suitable for Pharmacological Studies of Anti-Allergic Drugs Due to High Responsiveness to FcεRI Cross-Linking. Bioscience, Biotechnology and Biochemistry, 2011, 75, 382-384.	0.6	29
33	<scp>MRGPRX</scp> 2 is negatively targeted by <scp>SCF</scp> and <scp>IL</scp> â€4 to diminish pseudoâ€allergic stimulation of skin mast cells in culture. Experimental Dermatology, 2018, 27, 1298-1303.	1.4	29
34	The pseudo-allergic/neurogenic route of mast cell activation via MRGPRX2: discovery, functional programs, regulation, relevance to disease, and relation with allergic stimulation. Itch (Philadelphia,) Tj ETQq0 0	0 rgBJT /Oי	verlæsk 10 Tf 5
35	Regulation of mast cell characteristics by cytokines: divergent effects of interleukin-4 on immature mast cell lines versus mature human skin mast cells. Archives of Dermatological Research, 2004, 296, 134-8.	1.1	25
36	Retinoic acid potentiates inflammatory cytokines in human mast cells: Identification of mast cells as prominent constituents of the skin retinoid network. Molecular and Cellular Endocrinology, 2015, 406, 49-59.	1.6	25

3

#	Article	IF	CITATIONS
37	Auslöser und Risikofaktoren der Anaphylaxie. JDDG - Journal of the German Society of Dermatology, 2013, 11, 44-51.	0.4	24
38	Impact of sex on anaphylaxis severity—data from the Anaphylaxis Registry. Journal of Allergy and Clinical Immunology, 2015, 136, 1425-1426.	1.5	24
39	Thymic Stromal Lymphopoietin Interferes with the Apoptosis of Human Skin Mast Cells by a Dual Strategy Involving STAT5/Mcl-1 and JNK/Bcl-xL. Cells, 2019, 8, 829.	1.8	24
40	Thymic Stromal Lymphopoietin Promotes MRGPRX2-Triggered Degranulation of Skin Mast Cells in a STAT5-Dependent Manner with Further Support from JNK. Cells, 2021, 10, 102.	1.8	24
41	Infection of in vivo differentiated human mast cells with hantaviruses. Journal of General Virology, 2010, 91, 1256-1261.	1.3	23
42	Causes and risk factors for anaphylaxis. JDDG - Journal of the German Society of Dermatology, 2013, 11, 44-50.	0.4	23
43	Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells. Journal of Leukocyte Biology, 2015, 97, 985-995.	1.5	23
44	Tamoxifen counteracts the allergic immune response and improves allergenâ€induced dermatitis in mice. Clinical and Experimental Allergy, 2010, 40, 1256-1265.	1.4	22
45	Thymic stromal lymphopoietin induction by skin irritation is independent of tumour necrosis factor-α, but supported by interleukin-1. British Journal of Dermatology, 2015, 172, 951-960.	1.4	22
46	IL-4 and human skin mast cells revisited: reinforcement of a pro-allergic phenotype upon prolonged exposure. Archives of Dermatological Research, 2016, 308, 665-670.	1.1	22
47	Human Leukemic (HMC-1) Mast Cells Are Responsive to 1α,25-Dihydroxyvitamin D3: Selective Promotion of ICAM-3 Expression and Constitutive Presence of Vitamin D3 Receptor. Biochemical and Biophysical Research Communications, 2000, 273, 1104-1110.	1.0	21
48	An efficient method for gene knockâ€down by <scp>RNA</scp> interference in human skin mast cells. Experimental Dermatology, 2017, 26, 1136-1139.	1.4	21
49	Oliveâ€Oilâ€Derived Polyphenols Effectively Attenuate Inflammatory Responses of Human Keratinocytes by Interfering with the NFâ€₽B Pathway. Molecular Nutrition and Food Research, 2019, 63, 1900019.	1.5	20
50	CD43 (leukosialin, sialophorin) expression is differentially regulated by retinoic acids. European Journal of Immunology, 1997, 27, 1147-1151.	1.6	19
51	Testosterone exerts selective antiâ€inflammatory effects on human skin mast cells in a cell subset dependent manner. Experimental Dermatology, 2012, 21, 878-880.	1.4	19
52	ICAM-3 (CD50) is expressed by human mast cells: Induction of homotypic mast cell aggregation via ICAM-3. Cell Adhesion and Communication, 1999, 7, 195-209.	1.7	18
53	Baseline and stimulated turnover of cell surface c-Kit expression in different types of human mast cells. Experimental Dermatology, 2006, 15, 530-537.	1.4	17
54	MRGPRX2-Mediated Degranulation of Human Skin Mast Cells Requires the Operation of Gαi, Gαq, Ca++ Channels, ERK1/2 and PI3K—Interconnection between Early and Late Signaling. Cells, 2022, 11, 953.	1.8	17

#	Article	IF	CITATIONS
55	Signal Transduction via CD43 (Leukosialin, Sialophorin) and Associated Biological Effects in a Human Mast Cell Line (HMC-1). Biochemical and Biophysical Research Communications, 1998, 243, 163-169.	1.0	16
56	Apoptotic resistance of human skin mast cells is mediated by Mcl-1. Cell Death Discovery, 2017, 3, 17048.	2.0	16
57	Mast cells instruct keratinocytes to produce thymic stromal lymphopoietin: Relevance of the tryptase/protease-activated receptor 2 axis. Journal of Allergy and Clinical Immunology, 2022, 149, 2053-2061.e6.	1.5	14
58	FcεRI―and MRGPRX2â€evoked acute degranulation responses are fully additive in human skin mast cells. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1906-1909.	2.7	14
59	Mast cell-derived TNF-α and histamine modify IL-6 and IL-8 expression and release from cutaneous tumor cells. Experimental Dermatology, 2011, 20, 1020-1022.	1.4	13
60	Retinoic acid up-regulates myeloid ICAM-3 expression and function in a cell-specific fashionevidence for retinoid signaling pathways in the mast cell lineage. Journal of Leukocyte Biology, 2001, 69, 361-72.	1.5	13
61	Leukosialin (CD43) is proteolytically cleaved from stimulated HMC-1 cells. Immunobiology, 1997, 197, 82-96.	0.8	12
62	Retinoic acids and dexamethasone alter cell-surface density of β2-integrins and ICAM-1 on human leukemic (HMC-1) mast cells. Archives of Dermatological Research, 1997, 289, 111-115.	1.1	12
63	All-trans retinoic acid down-regulates expression and function of β2 integrins by human monocytes: opposite effects on monocytic cell lines. European Journal of Immunology, 2003, 33, 616-625.	1.6	12
64	Serum levels of 91±,111²-PGF2 and apolipoprotein A1 achieve high predictive power as biomarkers of anaphylaxis. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1801-1805.	2.7	12
65	Thymic stromal lymphopoietin production induced by skin irritation results from concomitant activation of proteaseâ€activated receptor 2 and interleukin 1 pathways. British Journal of Dermatology, 2020, 182, 119-129.	1.4	12
66	Opposing effects on immune function and skin barrier regulation by the proteasome inhibitor bortezomib in an allergenâ€induced eczema model. Experimental Dermatology, 2013, 22, 742-747.	1.4	11
67	Skin mast cell phenotypes between two highly divergent cohorts – more pronounced variability within than between groups. Experimental Dermatology, 2017, 26, 446-449.	1.4	11
68	β-arrestin-1 and β-arrestin-2 Restrain MRGPRX2-Triggered Degranulation and ERK1/2 Activation in Human Skin Mast Cells. Frontiers in Allergy, 0, 3, .	1.2	11
69	Mast cell transcriptome elucidation: what are the implications for allergic disease in the clinic and where do we go next?. Expert Review of Clinical Immunology, 2014, 10, 977-980.	1.3	10
70	The Impact on Allergy-Related Cells of a Birch Pollen Allergoid, with and without Monophosphoryl Lipid A, in Comparison with the Native Equivalent. International Archives of Allergy and Immunology, 2017, 172, 20-26.	0.9	10
71	Serological profiling reveals hsa-miR-451a as a possible biomarker of anaphylaxis. JCI Insight, 2022, 7, .	2.3	9
72	Bortezomib treatment diminishes hazelnutâ€induced intestinal anaphylaxis in mice. European Journal of Immunology, 2016, 46, 1727-1736.	1.6	8

#	Article	IF	CITATIONS
73	Cytokine Stimulation via MRGPRX2 Occurs with Lower Potency than by FcεRI-aggregation but with Similar Dependence on the ERK1/2 Module in Human Skin Mast Cells. Journal of Investigative Dermatology, 2021, , .	0.3	8
74	Tolerance induction through early feeding to prevent food allergy in infants with eczema (TEFFA): rationale, study design, andÂmethods of a randomized controlled trial. Trials, 2022, 23, 210.	0.7	8
75	The <scp>SCF</scp> / <scp>KIT</scp> axis in human mast cells: Capicua acts as potent <scp>KIT</scp> repressor and <scp>ERK</scp> predominates <scp>PI3K</scp> . Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3337-3349.	2.7	8
76	Tolerance induction through non-avoidance to prevent persistent food allergy (TINA) in children and adults with peanut or tree nut allergy: rationale, study design and methods of a randomized controlled trial and observational cohort study. Trials, 2022, 23, 236.	0.7	7
77	A subclone (5C6) of the human mast cell line HMC-1 represents a more differentiated phenotype than the original cell line. Archives of Dermatological Research, 1996, 288, 778-782.	1.1	6
78	Integration of the Human Dermal Mast Cell into the Organotypic Co-culture Skin Model. Methods in Molecular Biology, 2014, 1192, 69-85.	0.4	2
79	Integration of the Human Dermal Mast Cell into the Organotypic Co-culture Skin Model. Methods in Molecular Biology, 2020, 2163, 91-107.	0.4	2
80	Diversities of allergic pathologies and their modifiers: Report from the second DGAKI-JSA meeting. Allergology International, 2022, 71, 310-317.	1.4	1
81	An Allosteric Anti-Tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. SSRN Electronic Journal, 0, , .	0.4	0