Daniel A Harki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/454995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes. Journal of Medicinal Chemistry, 2022, 65, 2342-2360.	6.4	19
2	A synthetic covalent ligand of the C/EBPβ transactivation domain inhibits acute myeloid leukemia cells. Cancer Letters, 2022, 530, 170-180.	7.2	8
3	Developing inhibitors of the SARS-CoV-2 main protease. Biophysical Journal, 2022, 121, 192a.	0.5	0
4	The current toolbox for APOBEC drug discovery. Trends in Pharmacological Sciences, 2022, 43, 362-377.	8.7	12
5	Selective Nâ€Terminal BET Bromodomain Inhibitors by Targeting Nonâ€Conserved Residues and Structured Water Displacement**. Angewandte Chemie, 2021, 133, 1240-1246.	2.0	0
6	Selective Nâ€Terminal BET Bromodomain Inhibitors by Targeting Nonâ€Conserved Residues and Structured Water Displacement**. Angewandte Chemie - International Edition, 2021, 60, 1220-1226.	13.8	27
7	Functionâ€Oriented and Modular (+/â^)―cis â€Pseudoguaianolide Synthesis: Discovery of New Nrf2 Activators and NFâ€ÎºB Inhibitors. Chemistry - A European Journal, 2021, 27, 5564-5571.	3.3	3
8	Structural basis for recognition of distinct deaminated DNA lesions by endonuclease Q. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
9	4-Methyl-1,2,3-Triazoles as <i>N</i> -Acetyl-Lysine Mimics Afford Potent BET Bromodomain Inhibitors with Improved Selectivity. Journal of Medicinal Chemistry, 2021, 64, 10497-10511.	6.4	22
10	An efficient synthesis of RNA containing GS-441524: the nucleoside precursor of remdesivir. RSC Advances, 2021, 11, 31373-31376.	3.6	3
11	A Chemical Strategy for Intracellular Arming of an Endogenous Broad-Spectrum Antiviral Nucleotide. Journal of Medicinal Chemistry, 2021, 64, 15429-15439.	6.4	6
12	Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Molecular Cell, 2021, 81, 4467-4480.e7.	9.7	10
13	Differential Inhibition of APOBEC3 DNAâ€Mutator Isozymes by Fluoro―and Nonâ€Fluoroâ€Substituted 2′â€Deoxyzebularine Embedded in Singleâ€Stranded DNA. ChemBioChem, 2020, 21, 1028-1035.	2.6	16
14	Synthesis of Guaianolide Analogues with a Tunable α-Methyleneâ^`î³-lactam Electrophile and Correlating Bioactivity with Thiol Reactivity. Journal of Medicinal Chemistry, 2020, 63, 14951-14978.	6.4	17
15	Synthesis of 4â€Cyanoindole Nucleosides, 4â€Cyanoindoleâ€2ʹâ€Deoxyribonucleosideâ€5ʹâ€Triphosphate (4 and Enzymatic Incorporation of 4CINâ€TP into DNA. Current Protocols in Nucleic Acid Chemistry, 2020, 80, e101.	CINâ€TP), 0.5	4
16	Active site plasticity and possible modes of chemical inhibition of the human DNA deaminase APOBEC3B. FASEB BioAdvances, 2020, 2, 49-58.	2.4	9
17	Determinants of Oligonucleotide Selectivity of APOBEC3B. Journal of Chemical Information and Modeling, 2019, 59, 2264-2273.	5.4	10
18	Inhibiting APOBEC3 Activity with Single-Stranded DNA Containing 2′-Deoxyzebularine Analogues. Biochemistry, 2019, 58, 391-400.	2.5	29

DANIEL A HARKI

#	Article	IF	CITATIONS
19	Helenalin Analogues Targeting NFâ€ÎºB p65: Thiol Reactivity and Cellular Potency Studies of Varied Electrophiles. ChemMedChem, 2018, 13, 303-311.	3.2	20
20	SN-38 Conjugated Gold Nanoparticles Activated by Ewing Sarcoma Specific mRNAs Exhibit <i>In Vitro</i> and <i>In Vivo</i> Efficacy. Bioconjugate Chemistry, 2018, 29, 1111-1118.	3.6	16
21	APOBEC Enzymes as Targets for Virus and Cancer Therapy. Cell Chemical Biology, 2018, 25, 36-49.	5.2	137
22	Molecular Basis for the N-Terminal Bromodomain-and-Extra-Terminal-Family Selectivity of a Dual Kinase–Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2018, 61, 9316-9334.	6.4	56
23	4-Cyanoindole-2′-deoxyribonucleoside (4CIN): A Universal Fluorescent Nucleoside Analogue. Organic Letters, 2018, 20, 4310-4313.	4.6	18
24	Reassessing APOBEC3G Inhibition by HIV-1 Vif-Derived Peptides. Journal of Molecular Biology, 2017, 429, 88-96.	4.2	7
25	Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nature Structural and Molecular Biology, 2017, 24, 131-139.	8.2	214
26	Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. Journal of Medicinal Chemistry, 2017, 60, 839-885.	6.4	359
27	Signatures of Nucleotide Analog Incorporation by an RNA-Dependent RNA Polymerase Revealed Using High-Throughput Magnetic Tweezers. Cell Reports, 2017, 21, 1063-1076.	6.4	59
28	Targeting NF-κB p65 with a Helenalin Inspired Bis-electrophile. ACS Chemical Biology, 2017, 12, 102-113.	3.4	31
29	Synthesis of a peptide-universal nucleotide antigen: towards next-generation antibodies to detect topoisomerase I-DNA covalent complexes. Organic and Biomolecular Chemistry, 2016, 14, 4103-4109.	2.8	3
30	Rapid, microwave accelerated synthesis of [1,2,4]triazolo[3,4- b][1,3,4]oxadiazoles from 4-acylamino-1,2,4-triazoles. Tetrahedron Letters, 2016, 57, 4056-4060.	1.4	5
31	Alkyne Ligation Handles: Propargylation of Hydroxyl, Sulfhydryl, Amino, and Carboxyl Groups via the Nicholas Reaction. Organic Letters, 2016, 18, 4566-4569.	4.6	11
32	Catch and Release DNA Decoys: Capture and Photochemical Dissociation of NF-κB Transcription Factors. ACS Chemical Biology, 2016, 11, 1631-1638.	3.4	15
33	Immunodetection of human topoisomerase I-DNA covalent complexes. Nucleic Acids Research, 2016, 44, 2816-2826.	14.5	42
34	The Binding Interface between Human APOBEC3F and HIV-1 Vif Elucidated by Genetic and Computational Approaches. Cell Reports, 2015, 13, 1781-1788.	6.4	34
35	EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer. Oncotarget, 2015, 6, 3811-3824.	1.8	63
36	Parthenolide prodrug LC-1 slows growth of intracranial glioma. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2493-2495.	2.2	18

DANIEL A HARKI

#	Article	IF	CITATIONS
37	Synthesis and antileukemic activities of C1–C10-modified parthenolide analogues. Bioorganic and Medicinal Chemistry, 2015, 23, 4737-4745.	3.0	23
38	Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nature Communications, 2015, 6, 8526.	12.8	182
39	Oxidative Reactivities of 2-Furylquinolines: Ubiquitous Scaffolds in Common High-Throughput Screening Libraries. Journal of Medicinal Chemistry, 2015, 58, 7419-7430.	6.4	22
40	Smallâ€Molecule APOBEC3G DNA Cytosine Deaminase Inhibitors Based on a 4â€Aminoâ€1,2,4â€ŧriazoleâ€3â€ŧh Scaffold. ChemMedChem, 2013, 8, 112-117.	io 3.2	33
41	Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Delivery and Translational Research, 2013, 3, 121-142.	5.8	15
42	A Redox Economical Synthesis of Bioactive 6,12-Guaianolides. Organic Letters, 2013, 15, 2644-2647.	4.6	25
43	Inhibition of Guanosine Monophosphate Synthetase by the Substrate Enantiomer <scp>L</scp> â€XMP. ChemBioChem, 2012, 13, 2517-2520.	2.6	0
44	First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G. ACS Chemical Biology, 2012, 7, 506-517.	3.4	112
45	Bicyclic Cyclohexenones as Inhibitors of NF-κB Signaling. ACS Medicinal Chemistry Letters, 2012, 3, 459-464.	2.8	54
46	Solution-Phase Synthesis of Pyrroleâ^'Imidazole Polyamides. Journal of the American Chemical Society, 2009, 131, 7175-7181.	13.7	34
47	Oligomerization Route to Pyâ^'Im Polyamide Macrocycles. Organic Letters, 2009, 11, 3590-3593.	4.6	9
48	Cyclic Pyrroleâ^'Imidazole Polyamides Targeted to the Androgen Response Element. Journal of the American Chemical Society, 2009, 131, 7182-7188.	13.7	68
49	<i>In vivo</i> imaging of pyrrole-imidazole polyamides with positron emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13039-13044.	7.1	41
50	Lethal Mutagenesis of Picornaviruses with N-6-Modified Purine Nucleoside Analogues. Antimicrobial Agents and Chemotherapy, 2008, 52, 971-979.	3.2	45
51	Structural Insights into Mechanisms of Catalysis and Inhibition in Norwalk Virus Polymerase. Journal of Biological Chemistry, 2008, 283, 7705-7712.	3.4	138
52	Development of a Novel Polyamide-Based Agent to Inhibit EVI1 Function. Blood, 2008, 112, 2660-2660.	1.4	0
53	Lethal Mutagenesis of Poliovirus Mediated by a Mutagenic Pyrimidine Analogue. Journal of Virology, 2007, 81, 11256-11266.	3.4	43
54	Synthesis of a Universal 5-Nitroindole Ribonucleotide and Incorporation into RNA by a Viral RNA-Dependent RNA Polymerase. ChemBioChem, 2007, 8, 1359-1362.	2.6	25

#	Article	IF	CITATIONS
55	Synthesis and Antiviral Activity of 5-Substituted Cytidine Analogues:  Identification of a Potent Inhibitor of Viral RNA-Dependent RNA Polymerases. Journal of Medicinal Chemistry, 2006, 49, 6166-6169.	6.4	42
56	Synthesis and Antiviral Evaluation of a Mutagenic and Non-Hydrogen Bonding Ribonucleoside Analogue: 1-β-d-Ribofuranosyl-3-nitropyrroleâ€. Biochemistry, 2002, 41, 9026-9033.	2.5	46