
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4549871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep and shallow electronic states associated to doping, contamination and intrinsic defects in ε-Ga2O3 epilayers. Materials Science in Semiconductor Processing, 2022, 138, 106307.	1.9	9
2	Combined impact of B2H6 flow and growth temperature on morphological, structural, optical, and electrical properties of MOCVD-grown B(In)GaAs heterostructures designed for optoelectronics. Applied Surface Science, 2022, 577, 151884.	3.1	4
3	Point defect localization and cathodoluminescence emission in undoped ε-Ga ₂ O ₃ . Journal Physics D: Applied Physics, 2022, 55, 295103.	1.3	3
4	Study of SnO/ <i>ɛ</i> -Ga ₂ O ₃ <i>p</i> – <i>n</i> diodes in planar geometry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 042701.	0.9	6
5	Comprehensive Raman study of orthorhombic κĴµ-Ga ₂ O ₃ and the impact of rotational domains. Journal of Materials Chemistry C, 2021, 9, 14175-14189.	2.7	7
6	Cathodoluminescence of undoped and Si-doped É›-Ga2O3 films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114918.	1.7	12
7	n-Type doping of ε-Ga2O3 epilayers by high-temperature tin diffusion. Acta Materialia, 2021, 210, 116848.	3.8	8
8	Thermodynamic and Kinetic Effects on the Nucleation and Growth of ε/κ- or β-Ga ₂ O ₃ by Metal–Organic Vapor Phase Epitaxy. Crystal Growth and Design, 2021, 21, 6393-6401.	1.4	13
9	In situ TEM study of κ→β and κ→γ phase transformations in Ga2O3. Acta Materialia, 2020, 183, 216-227.	3.8	60
10	Ga ₂ O ₃ polymorphs: tailoring the epitaxial growth conditions. Journal of Materials Chemistry C, 2020, 8, 10975-10992.	2.7	84
11	A Metal-Oxide Contact to ε-Ga ₂ O ₃ Epitaxial Films and Relevant Conduction Mechanism. ECS Journal of Solid State Science and Technology, 2020, 9, 055002.	0.9	8
12	Epitaxial growth of GaN/Ga2O3 and Ga2O3/GaN heterostructures for novel high electron mobility transistors. Journal of Crystal Growth, 2020, 534, 125511.	0.7	35
13	The electronic structure of <i>îµ</i> -Ga2O3. APL Materials, 2019, 7, .	2.2	49
14	Si and Sn doping of ε-Ga2O3 layers. APL Materials, 2019, 7, .	2.2	47
15	Progress in MOVPE growth of Ga2O3. , 2019, , 3-30.		1
16	Electronic materials and crystal growth. , 2019, , 1-3.		0
17	Indium phosphide. , 2019, , 241-272.		4
18	Conduction mechanism and shallow donor properties in silicon-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>É></mml:mi><mml:mtext>-Gmathyariant="normal">a<mml:mn>2</mml:mn><mml:msub><mml:mi< td=""><td>ml:mtext></td><td><mml:msub>< 14</mml:msub></td></mml:mi<></mml:msub></mml:mtext></mml:mrow></mml:math 	ml:mtext>	<mml:msub>< 14</mml:msub>

mathvariant="normal">a</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>thin films: An electron paramagnetic resonance study. Physical Review Materials, 2019, 3, .

#	Article	IF	CITATIONS
19	Gallium Oxide: A Rising Star in The Semiconductor Realm. Gazi University Journal of Science, 2019, 32, 1092-1095.	0.6	2
20	Sol-gel growth and characterization of In2O3 thin films. Thin Solid Films, 2018, 645, 383-390.	0.8	8
21	Assessment of phonon scattering-related mobility in <i>î²</i> -Ga ₂ O ₃ . Semiconductor Science and Technology, 2018, 33, 105008.	1.0	21
22	Îμ-Ga2O3 epilayers as a material for solar-blind UV photodetectors. Materials Chemistry and Physics, 2018, 205, 502-507.	2.0	87
23	The real structure of ε-Ga ₂ O ₃ and its relation to κ-phase. CrystEngComm, 2017, 19, 1509-1516.	1.3	227
24	Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts. Applied Surface Science, 2017, 412, 52-57.	3.1	36
25	Thermal stability of ε-Ga2O3 polymorph. Acta Materialia, 2017, 140, 411-416.	3.8	84
26	Influence of ingot and wafer annealing on the homogeneity of Fe-doped semiinsulating InP wafers. , 2017, , 157-160.		0
27	Theoretical and experimental investigation of optical absorption anisotropy in <i>l²</i> -Ga ₂ 0 ₃ . Journal of Physics Condensed Matter, 2016, 28, 224005.	0.7	59
28	Crystal Structure and Ferroelectric Properties of ε-Ga ₂ O ₃ Films Grown on (0001)-Sapphire. Inorganic Chemistry, 2016, 55, 12079-12084.	1.9	191
29	Hetero-epitaxy of Îμ-Ga2O3 layers by MOCVD and ALD. Journal of Crystal Growth, 2016, 443, 25-30.	0.7	152
30	Analysis of the scattering mechanisms controlling electron mobility in <i>1²</i> -Ga ₂ O ₃ crystals. Semiconductor Science and Technology, 2016, 31, 035023.	1.0	74
31	Thermal expansion coefficients of β-Ga ₂ O ₃ single crystals. Applied Physics Express, 2015, 8, 111101.	1.1	49
32	Epitaxy for Energy Materials. , 2015, , 1-49.		3
33	Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide. Journal of Applied Physics, 2014, 115, 053504.	1.1	27
34	Inâ€gap states of In ₂ O ₃ single crystals investigated by scanning tunneling spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 59-65.	0.8	12
35	Homoepitaxial growth of βâ€Ga ₂ O ₃ layers by metalâ€organic vapor phase epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 27-33.	0.8	170
36	Heteroepitaxy of Ga _{2(1â€x)} In _{2x} O ₃ layers by MOVPE with two different oxygen sources. Crystal Research and Technology, 2014, 49, 552-557.	0.6	30

#	Article	IF	CITATIONS
37	On the nature and temperature dependence of the fundamental band gap of In ₂ O ₃ . Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 54-58.	0.8	96
38	Growth, characterization, and properties of bulk SnO ₂ single crystals. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 66-73.	0.8	46
39	A novel crystal growth technique from the melt: Levitation-Assisted Self-Seeding Crystal Growth Method. Journal of Crystal Growth, 2014, 388, 61-69.	0.7	49
40	High-voltage field effect transistors with wide-bandgap <i>β</i> -Ga2O3 nanomembranes. Applied Physics Letters, 2014, 104, .	1.5	288
41	Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. Journal of Crystal Growth, 2014, 401, 665-669.	0.7	133
42	Plasma enhanced growth of GaN single crystalline layers from Ga vapour. Crystal Research and Technology, 2013, 48, 186-192.	0.6	5
43	Melt growth, characterization and properties of bulk In2O3 single crystals. Journal of Crystal Growth, 2013, 362, 349-352.	0.7	62
44	Effect of heat treatment on properties of melt-grown bulk In ₂ O ₃ single crystals. CrystEngComm, 2013, 15, 2220-2226.	1.3	40
45	Crystallization of 640kg mc-silicon ingots under traveling magnetic field by using a heater-magnet module. Journal of Crystal Growth, 2013, 365, 54-58.	0.7	36
46	Structural and optical investigation of non-polar (1-100) GaN grown by the ammonothermal method. Journal of Applied Physics, 2013, 113, .	1.1	46
47	Growth of wurtzite InN on bulk In2O3(111) wafers. Applied Physics Letters, 2012, 101, .	1.5	16
48	Schottky barrier height of Au on the transparent semiconducting oxide <i>β</i> -Ga2O3. Applied Physics Letters, 2012, 101, .	1.5	293
49	Germanium nanowire growth controlled by surface diffusion effects. Applied Physics Letters, 2012, 101, 043105.	1.5	13
50	Strain-induced phase transitions in epitaxial NaNbO ₃ thin films grown by metal–organic chemical vapour deposition. Journal of Applied Crystallography, 2012, 45, 1015-1023.	1.9	40
51	A new approach to free-standing GaN using β-Ga2O3 as a substrate. CrystEngComm, 2012, 14, 8536.	1.3	37
52	SiC seed polarity-dependent bulk AlN growth under the influence of residual oxygen. Journal of Crystal Growth, 2012, 344, 19-26.	0.7	22
53	Growth of bulk AIN single crystals with low oxygen content taking into account thermal and kinetic effects of oxygen-related gaseous species. Journal of Crystal Growth, 2012, 360, 185-188.	0.7	15
54	Growth kinetics on silicon facets during low-temperature crystallization from indium solution. Journal of Crystal Growth, 2012, 347, 31-36.	0.7	5

#	Article	IF	CITATIONS
55	Impact of the crystallographic structure of epitaxially grown strained sodium–bismuth–titanate thin films on local piezo- and ferroelectric properties. Materials Research Bulletin, 2012, 47, 2056-2061.	2.7	5
56	Polycrystalline silicon films on glass grown by amorphous–liquid–crystalline transition at temperatures below 330°C. Thin Solid Films, 2012, 520, 1784-1788.	0.8	11
57	Experimental electronic structure of In ₂ O ₃ and Ga ₂ O ₃ . New Journal of Physics, 2011, 13, 085014.	1.2	273
58	Bulk Crystal Growth of Semiconductors: An Overview. , 2011, , 1-35.		2
59	The surface band structure of β-Ga ₂ O ₃ . Journal of Physics: Conference Series, 2011, 286, 012027.	0.3	35
60	In situ kinetic investigations during aluminium nitride purification and crystal growth processes by capillary coupled mass spectrometry. Thermochimica Acta, 2011, 526, 213-221.	1.2	9
61	Growth of epitaxial sodium-bismuth-titanate films by metal-organic chemical vapor phase deposition. Thin Solid Films, 2011, 520, 239-244.	0.8	11
62	Gas tight sintered material for high temperature sublimation setups. Journal of the European Ceramic Society, 2011, 31, 2733-2739.	2.8	8
63	Optical constants of MOCVD-grown Aurivillius phases in the Bi4Ti3O12–Na0.5Bi0.5TiO3 system measured by spectroscopic ellipsometry. Applied Physics A: Materials Science and Processing, 2011, 105, 81-88.	1.1	2
64	Structural and transport properties of SrRuO3 thin films grown by MOCVD on (001) SrTiO3 substrates: The role of built-in strain and extra phases. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 647-652.	1.7	5
65	Ultraviolet luminescence in AlN. Physica Status Solidi (B): Basic Research, 2011, 248, 1513-1518.	0.7	49
66	A new approach to grow Câ€doped GaN thick epitaxial layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2120-2122.	0.8	10
67	A new method for calculation of island-size distribution in submonolayer epitaxial growth. Applied Mathematical Modelling, 2011, 35, 1331-1336.	2.2	6
68	PVT growth of GaN bulk crystals. Journal of Crystal Growth, 2011, 318, 406-410.	0.7	12
69	Influence of Na on the structure of Bi4Ti3O12 films deposited by liquid-delivery spin MOCVD. Thin Solid Films, 2011, 519, 5754-5759.	0.8	6
70	Spectroscopic ellipsometry studies on the optical constants of Bi4Ti3O12:xNa thin films grown by metal-organic chemical vapor deposition. Thin Solid Films, 2011, 519, 3782-3788.	0.8	6
71	Impact of epitaxial strain on the ferromagnetic transition temperature of SrRuO3 thin films. Thin Solid Films, 2011, 519, 6264-6268.	0.8	12
72	Pyramidal inversion domain boundaries revisited. Applied Physics Letters, 2011, 99, .	1.5	21

#	Article	IF	CITATIONS
73	Electrical properties of <i>β</i> -Ga2O3 single crystals grown by the Czochralski method. Journal of Applied Physics, 2011, 110, .	1.1	442
74	Use of external fields in the melt growth of semiconductors. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C7-C8.	0.3	0
75	Coloration of Wide-Bandgap Semiconductors Originating from Particle Plasmons. , 2010, , .		Ο
76	Solution growth of crystalline silicon on glass in the In–Si–Mo system. Journal of Crystal Growth, 2010, 312, 1632-1635.	0.7	5
77	Czochralski growth and characterization of βâ€Ga ₂ O ₃ single crystals. Crystal Research and Technology, 2010, 45, 1229-1236.	0.6	378
78	Reduction of the dislocation density in HVPE-grown GaN epi-layers by an in situ SiNx treatment. Journal of Crystal Growth, 2010, 312, 595-600.	0.7	8
79	Reply to "Comments on †Analysis of twin formation in sphalerite-type compound semiconductors: A model study on bulk InP using statistical methods'―by D.T.J. Hurle and M. Dudley. Journal of Crystal Growth, 2010, 312, 1661-1662.	0.7	1
80	Depositions of SrRuO3 thin films on oxide substrates with liquid-delivery spin MOCVD. Thin Solid Films, 2010, 518, 4675-4679.	0.8	8
81	Thermal-induced change in surface termination of DyScO3(110). Surface Science, 2010, 604, L55-L58.	0.8	14
82	Effects of postâ€growth annealing on physical properties of SrRuO ₃ thin film grown by MOCVD. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2492-2498.	0.8	10
83	Factors affecting the luminescence emission of InGaN multiâ€quantum wells grown on (0001) sapphire substrates by MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 68-71.	0.8	1
84	HVPE GaN substrates: growth and characterization. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1756-1759.	0.8	4
85	The electronic structure of \hat{l}^2 -Ga2O3. Applied Physics Letters, 2010, 97, .	1.5	146
86	Recent Advances in Bulk Crystal Growth. MRS Bulletin, 2009, 34, 239-244.	1.7	9
87	Aligned AlN nanowires by self-organized vapor–solid growth. Nanotechnology, 2009, 20, 495304.	1.3	41
88	Influence of the atmosphere on the growth of LiYF4single crystal fibers by the micro-pulling-down method. Crystal Research and Technology, 2009, 44, 137-140.	0.6	13
89	Microscopic lateral overgrowth by physical vapour transport of GaN on selfâ€organized diamondâ€like carbon masks. Crystal Research and Technology, 2009, 44, 1078-1082.	0.6	2
90	Self-assembled and ordered growth of silicon and germanium nanowires. Superlattices and Microstructures, 2009, 46, 277-285.	1.4	23

#	Article	IF	CITATIONS
91	Surface termination of the NdGaO3(110). Applied Surface Science, 2009, 255, 8685-8687.	3.1	16
92	The role of carbon in transport processes during PVT growth of bulk GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1484-1487.	0.8	8
93	Coloration of zinc oxide crystals originating from particle plasmons. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2658-2660.	0.8	7
94	Boron―and stoichiometryâ€related defect engineering during B ₂ O ₃ â€free GaAs crystal growth. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2778-2784.	0.8	3
95	Growth of oxide compounds under dynamic atmosphere composition. Journal of Crystal Growth, 2009, 311, 534-536.	0.7	39
96	Growth of single crystalline GaN from chlorine-free gas phase. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1543-1546.	0.8	3
97	Liquid phase epitaxy set-up designed for in situ X-ray study of SiGe island growth on (001)ÂSi substrates. Crystal Research and Technology, 2008, 43, 1278-1285.	0.6	2
98	Phase equilibria and prospects of crystal growth in the system LiF–GdF ₃ –LuF ₃ . Crystal Research and Technology, 2008, 43, 1168-1172.	0.6	2
99	Effects of the Li-evaporation on the Czochralski growth of Î ³ -LiAlO2. Journal of Crystal Growth, 2008, 310, 214-220.	0.7	18
100	Growth of GaN crystals from chlorine-free gas phase. Journal of Crystal Growth, 2008, 310, 916-919.	0.7	10
101	Homoepitaxial seeding and growth of bulk AlN by sublimation. Journal of Crystal Growth, 2008, 310, 930-934.	0.7	35
102	Properties of rare-earth scandate single crystals (Re=Ndâ^'Dy). Journal of Crystal Growth, 2008, 310, 2649-2658.	0.7	137
103	The growth of ZnO crystals from the melt. Journal of Crystal Growth, 2008, 310, 3009-3013.	0.7	52
104	Analysis of twin formation in sphalerite-type compound semiconductors: A model study on bulk InP using statistical methods. Journal of Crystal Growth, 2008, 310, 5270-5277.	0.7	15
105	Investigation of Au and In as solvents for the growth of silicon nanowires on Si(111). Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2462-2467.	1.3	17
106	Equipment for Low Temperature Steady-State Growth of Silicon from Metallic Solutions. Crystal Growth and Design, 2008, 8, 2484-2488.	1.4	14
107	Twin generation in zinc-blende type III–V compound semiconductors: New insights from an InP case study. , 2008, , .		0
108	Influence of Growth Parameters on the Residual Strain in 3C-SiC Epitaxial Layers on (001) Silicon. Materials Science Forum, 2008, 600-603, 223-226.	0.3	7

#	Article	lF	CITATIONS
109	Thermoluminescence in a scanning electron microscope. Journal of Applied Physics, 2008, 104, 083710.	1.1	1
110	Theoretical model for calculation of thermal diffusion factors in diluted binary melts. Chemical Physics Letters, 2007, 444, 202-204.	1.2	2
111	Deposition of bismuth-titanate films with liquid-delivery spin MO-CVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 144, 132-137.	1.7	9
112	Compensating defects in Si-doped AlN bulk crystals. Physica B: Condensed Matter, 2007, 401-402, 323-326.	1.3	19
113	Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method. Optical Materials, 2007, 30, 11-14.	1.7	31
114	Investigations of the growth conditions for GaN-bulk crystals grown by the sublimation technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2219-2222.	0.8	3
115	n-type conductivity in sublimation-grown AlN bulk crystals. Physica Status Solidi - Rapid Research Letters, 2007, 1, 147-149.	1.2	15
116	Polarity- and orientation-related defect distribution in 4H-SiC single crystals. Journal of Crystal Growth, 2006, 290, 137-143.	0.7	31
117	Bridgman-grown zinc oxide single crystals. Journal of Crystal Growth, 2006, 296, 27-30.	0.7	54
118	Origin of the fluctuations in the luminescence emission in InGaN quantum wells. Materials Science in Semiconductor Processing, 2006, 9, 2-7.	1.9	1
119	Epitaxial growth of ferroelectric oxide films. Progress in Crystal Growth and Characterization of Materials, 2006, 52, 159-212.	1.8	83
120	Optical and structural studies of high-quality bulk-like GaN grown by HVPE on a MOVPE AlN buffer layer. Semiconductor Science and Technology, 2006, 21, 702-708.	1.0	16
121	Boron as an anti-surfactant in sublimation growth of AlN single crystals. Applied Physics Letters, 2006, 88, 211904.	1.5	12
122	Czochralski growth of Ti:sapphire laser crystals. , 2005, 5990, 53.		13
123	Compositional and optical uniformity of InGaN layers deposited on (0001) sapphire by metal–organic vapour phase epitaxy. Semiconductor Science and Technology, 2004, 19, 147-151.	1.0	14
124	A study of Indium incorporation efficiency in InGaN grown by MOVPE. Journal of Crystal Growth, 2004, 265, 434-439.	0.7	51
125	Role of electrode technology in radiation detector based on semi-insulating InP in development of detector array. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 531, 181-191.	0.7	6
126	Effects of thermal annealing on GaN epilayers deposited on (0001) sapphire. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 91-92, 294-297.	1.7	2

#	Article	IF	CITATIONS
127	Correlation of crystal defects and galvanomagnetic parameters of semi-insulating InP with performance of radiation detectors fabricated from characterised materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 91-92, 516-520.	1.7	3
128	Recent improvements in detection performances of radiation detectors based on bulk semi-insulating InP. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 487, 27-32.	0.7	11
129	Characterization of HVPE GaN layers by atomic force microscopy and Raman spectroscopy. Semiconductor Science and Technology, 2001, 16, 776-782.	1.0	8
130	Indium Phosphide. , 2001, , 4061-4065.		1
131	Present status and perspectives of the radiation detectors based on InP materials. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458, 400-405.	0.7	19
132	Hydride vapour phase epitaxy growth and characterisation of GaN layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 159-164.	1.7	9
133	A vertical reactor for deposition of gallium nitride. Materials Chemistry and Physics, 2000, 66, 213-218.	2.0	8
134	Uniformity of semi-insulating InP wafers obtained by Fe diffusion. Journal of Applied Physics, 2000, 88, 5225-5229.	1.1	17
135	Performance of radiation detectors based on semi-insulating GaAs and InP . , 2000, , .		0
136	On the electrical activity of Fe in LEC indium phosphide. Semiconductor Science and Technology, 1999, 14, 246-250.	1.0	9
137	Photoluminescence studies of neutron-transmutation-doped InP:Fe. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 175-180.	0.6	3
138	Homogeneity of Thermally-Annealed Lightly Fe-Doped SI InP. Materials Research Society Symposia Proceedings, 1999, 588, 111.	0.1	0
139	Electrical and detection properties of particle detectors based on LEC semi-insulating InP. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 408, 491-495.	0.7	19
140	Annealing-Related Phenomena in Bulk Semi-Insulating Indium Phosphide. Defect and Diffusion Forum, 1998, 157-159, 103-112.	0.4	2
141	Incorporation and electrical activity of Fe in LEC InP. Semiconductor Science and Technology, 1998, 13, 512-516.	1.0	5
142	Electrical and Detection Characteristics of Improved Particle Detectors Based on Semi-Insulating InP. , 1998, , 269-272.		1
143	Low-Temperature Hydride Vapor Phase Epitaxy of GaN Layers on Different Substrates. , 1998, , 95-98.		0
144	Conductivity conversion of lightly Fe-doped InP induced by thermal annealing: A method for semi-insulating material production. Journal of Applied Physics, 1997, 81, 7604-7611.	1.1	24

#	Article	IF	CITATIONS
145	Homogeneity of Fe-Doped InP Wafers Using Optical Microprobes. Materials Science Forum, 1997, 258-263, 825-830.	0.3	1
146	Uniformity and physical properties of semi-insulating Fe-doped InP after wafer or ingot annealing. Journal of Applied Physics, 1997, 82, 3836-3845.	1.1	18
147	Growth of semi-insulating InP with uniform axial Fe doping by a double-crucible LEC technique. Journal of Crystal Growth, 1997, 179, 57-66.	0.7	2
148	Determination of cadmium in indium phosphide by electrothermal atomic absorption spectrometry and ion-selective electrode potentiometry. Fresenius' Journal of Analytical Chemistry, 1997, 359, 533-537.	1.5	1
149	Homogeneity of thermally annealed Fe-doped InP wafers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 233-237.	1.7	7
150	Electrical and optical properties of semi-insulating InP obtained by wafer and ingot annealing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 45, 147-151.	1.7	16
151	A Study of Convection, Striations and Interface Shape in InP Crystals Grown by the Double-Crucible LEC Technique. Crystal Research and Technology, 1997, 32, 1085-1093.	0.6	2
152	A study of iron incorporation in LEC-grown indium phosphide. Journal of Crystal Growth, 1996, 166, 572-577.	0.7	6
153	Effect of Growth Parameters on Iron Incorporation in Semi-Insulating LEC Indium Phosphide. Materials Science Forum, 1996, 203, 1-6.	0.3	1
154	Photocurrent contrast in semi-insulating Fe-doped InP. Semiconductor Science and Technology, 1996, 11, 941-946.	1.0	9
155	Properties of thermally annealed undoped and sulphur doped InP wafers. Materials Science and Technology, 1995, 11, 1223-1228.	0.8	4
156	Magnetic properties of Fe3(Ga1â^'xSbx)2. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 145-146.	1.0	3
157	Evidence of two kinds of acceptors in undoped semi-insulating GaAs: Positron trapping at gallium vacancies and negative ions. Physical Review B, 1995, 52, 8112-8120.	1.1	36
158	Nearâ€bandâ€edge absorption and positron trapping under illumination in semiâ€insulating GaAs: Role of As vacancies. Applied Physics Letters, 1995, 66, 2534-2536.	1.5	14
159	Determination of tellurium in indium phosphide by electrothermal atomic absorption spectrometry and ultraviolet–visible spectrophotometry. Journal of Analytical Atomic Spectrometry, 1995, 10, 433-437.	1.6	6
160	Pressure of phosphorus in equilibrium with solid InP at different temperatures. Journal of Applied Physics, 1994, 75, 2406-2409.	1.1	14
161	Preparation and characterization of semi-insulating undoped indium phosphide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 95-100.	1.7	37
162	Structural characterization of heavily Zn-doped liquid encapsulated Czochralski InP. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 120-125.	1.7	2

#	Article	IF	CITATIONS
163	HBr-K2Cr2O7-H2O etching system for indium phosphide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 488-492.	1.7	9
164	HBr-K2Cr2O7-H2O etching system for indium phosphide. Journal of Crystal Growth, 1994, 141, 57-67.	0.7	26
165	Inclusions in co-doped InP single crystals. Semiconductor Science and Technology, 1992, 7, A141-A145.	1.0	2
166	Stoichiometryâ€dependent native acceptor and donor levels in Gaâ€richâ€nâ€type gallium arsenide. Journal of Applied Physics, 1992, 71, 3325-3329.	1.1	19
167	<title>Preparation of low-dislocation density and semi-insulating InP using LEC technique</title> . , 1992, , .		0
168	Time-of-flight neutron diffraction investigation of temperature factors in the Zn blende semiconductor InP. Physica B: Condensed Matter, 1992, 180-181, 627-628.	1.3	0
169	Influence of melt stoichiometry on deep hole traps in n-type LEC Gallium Arsenide. , 1992, , 223-228.		0
170	Cadmium segregation in LEC-grown InP. Materials Letters, 1991, 10, 404-406.	1.3	2
171	Improved crystal growth processes for high quality Ill–V substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1991, 9, 9-18.	1.7	5
172	A study of structural properties of bulk double-doped InP by laser scattering tomography and photoetching. Applied Surface Science, 1991, 50, 207-211.	3.1	0
173	Influence of iron content on electrical characteristics and thermal stability of LEC indium phosphide. Journal of Electronic Materials, 1991, 20, 1043-1048.	1.0	12
174	Microhardness studies of doped and undoped InP crystals. Journal of Materials Science Letters, 1991, 10, 559-561.	0.5	22
175	Electro-optical properties of InGaAs layers grown by hydride vapour phase epitaxy. Crystal Research and Technology, 1990, 25, 25-30.	0.6	0
176	LEC growth and structural characterization of low-EPD co-doped indium phosphide. , 1990, , .		0
177	Infrared absorption spectra in bulk Feâ€doped InP. Applied Physics Letters, 1990, 56, 638-640.	1.5	35
178	Scanning-DLTS and TEM-investigations in Lec-GaAs: New arguments on the EL2-generation mechanism. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 616-617.	0.0	0
179	Effects of melt composition on deep electronic states and compensation ratios inn-type LEC gallium arsenide. Journal of Electronic Materials, 1989, 18, 151-155.	1.0	15
180	Structural and electrical properties ofn-type bulk gallium arsenide grown from non-stoichiometric melts. Journal of Electronic Materials, 1989, 18, 185-189.	1.0	28

#	Article	IF	CITATIONS
181	Growth and properties of bulk indium phosphide doubly doped with cadmium and sulphur. Journal of Crystal Growth, 1989, 96, 795-801.	0.7	14
182	Effects of melt composition on structural and electrical characteristics of LEC Si-doped gallium arsenide. Crystal Research and Technology, 1989, 24, 767-772.	0.6	4
183	Influence of melt composition on electron mobility in Si-doped LEC GaAs. Journal of Crystal Growth, 1989, 94, 433-440.	0.7	12
184	Deep level characterization in semi-insulating LEC gallium arsenide. Physica Status Solidi A, 1988, 105, 521-530.	1.7	4
185	Effect of crystal orientation on dislocation formation in LEC GaAs. Journal of Crystal Growth, 1987, 84, 266-270.	0.7	4
186	Indium-silicon co-doping effects in LEC — Grown gallium arsenide crystals. Acta Physica Hungarica, 1987, 61, 255-258.	0.1	1
187	Properties of GaAs Bulk Crystals in High-Doping Regime. , 1987, , 948-957.		Ο
188	Mobility and concentration of carriers in semi-insulating gallium arsenide. Solid-State Electronics, 1986, 29, 589-590.	0.8	1
189	Influence of Si and S doping on structural defects in LEC-grown gallium arsenide. Journal of Crystal Growth, 1986, 79, 271-279.	0.7	21
190	Impurity incorporation and structural defects in hydride VPE InP films. Journal of Crystal Growth, 1986, 79, 386-393.	0.7	2
191	A study of microdefects in n-type doped gaAs crystals using Cathodoluminescence and x-ray techniques. Journal of Crystal Growth, 1985, 72, 717-725.	0.7	34
192	Optimal growth conditions and main features of GaAs single crystals for solar cell technology: A review. Solar Energy Materials and Solar Cells, 1985, 11, 361-379.	0.4	6
193	LEC-growth and the major electrical and structural characteristics of semi-insulating gallium arsenide. Acta Physica Hungarica, 1985, 57, 263-270.	0.1	2
194	Dislocation reduction in heavily doped gallium arsenide single crystals. Acta Crystallographica Section A: Foundations and Advances, 1984, 40, C200-C200.	0.3	0
195	Si-doping effect on electrical properties of lec-gaas crystals. Materials Chemistry and Physics, 1983, 9, 307-314.	2.0	7
196	Dislocation-free silicon-doped gallium arsenide grown by LEC procedure. Journal of Crystal Growth, 1983, 63, 415-418.	0.7	30
197	EPD investigation in LEC-grown silicon-doped gallium arsenide. Crystal Research and Technology, 1983, 18, 157-164.	0.6	11
198	Electrical properties and thermal stability of semi-insulating InP crystals with different iron content. , 0, , .		0

#	Article	IF	CITATIONS
199	Deep level investigation in Fe-doped semi-insulating indium phosphide crystals. , 0, , .		0
200	Double doping: A method to decrease dislocation densities in LEC InP crystals. , 0, , .		0
201	Study of the defect evolution with Fe content in semi-insulating InP by photoinduced current transient spectroscopy. , 0, , .		0
202	Iron segregation in LEC InP crystals. , 0, , .		0
203	Annealing-related conductivity conversion in lightly Fe-doped n-type InP wafers. , 0, , .		1
204	Semi-insulating behaviour of n-type lightly Fe-doped InP wafers after thermal annealing. , 0, , .		0
205	Electrical and detection performances of particle detectors based on bulk semi-insulating InP. , O, , .		Ο
206	On the electrical and detection performances of particle detectors based on bulk semi-insulating InP. , 0, , .		0
207	Uniformity of Fe-diffused semi-insulating InP wafers. , 0, , .		0
208	X- and gamma-ray detectors based on bulk semi-insulating GaAs & InP: present status and prospects. , 0, ,		1
209	On the physical parameters and crystal defects of bulk semi-insulating InP for radiation detector fabrication. , 0, , .		0
210	Semi-insulating InP detectors for solar neutrino experiments. , 0, , .		0
211	Photocurrent and photoluminescence in Fe-doped InP. , 0, , .		1
212	Characterization of GaN/InGaN hetero-structures by Raman spectroscopy, PL and CL. , 0, , .		0
213	Semi-insulating InP wafers obtained by Fe-diffusion. , 0, , .		1
214	P-Type Doping of Epitaxial 3C-SiC Layers on Silicon (001). Materials Science Forum, 0, 615-617, 165-168.	0.3	7
215	n-Type Doping of ε-Ga ₂ O ₃ n Epilayers by High-Temperature Tin Diffusion. SSRN Electronic Journal, 0, , .	0.4	1