
Susan Biggins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4549799/publications.pdf Version: 2024-02-01

SUSAN RICCINS

#	Article	IF	CITATIONS
1	A transcriptional roadblock protects yeast centromeres. Nucleic Acids Research, 2022, 50, 7801-7815.	6.5	11
2	Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments. Nature Communications, 2022, 13, 2152.	5.8	17
3	Functional dissection of human mitotic genes using CRISPR–Cas9 tiling screens. Genes and Development, 2022, 36, 495-510.	2.7	2
4	Kinetochore-bound Mps1 regulates kinetochore–microtubule attachments via Ndc80 phosphorylation. Journal of Cell Biology, 2021, 220, .	2.3	27
5	Computed structures of core eukaryotic protein complexes. Science, 2021, 374, eabm4805.	6.0	316
6	Cdk1 Phosphorylation of the Dam1 Complex Strengthens Kinetochore-Microtubule Attachments. Current Biology, 2020, 30, 4491-4499.e5.	1.8	17
7	Fifty years of cycling. Molecular Biology of the Cell, 2020, 31, 2868-2870.	0.9	1
8	H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nature Communications, 2020, 11, 809.	5.8	41
9	chTOG is a conserved mitotic error correction factor. ELife, 2020, 9, .	2.8	27
10	Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores. Proceedings of the United States of America, 2019, 116, 17355-17360.	3.3	15
11	The Bub1-TPR Domain Interacts Directly with Mad3 to Generate Robust Spindle Checkpoint Arrest. Current Biology, 2019, 29, 2407-2414.e7.	1.8	19
12	Kinetochore-associated Stu2 promotes chromosome biorientation in vivo. PLoS Genetics, 2019, 15, e1008423.	1.5	26
13	Sue Biggins. Current Biology, 2019, 29, R227-R229.	1.8	0
14	A Kinesin-5, Cin8, Recruits Protein Phosphatase 1 to Kinetochores and Regulates Chromosome Segregation. Current Biology, 2018, 28, 2697-2704.e3.	1.8	30
15	Purification of kinetochores from the budding yeast Saccharomyces cerevisiae. Methods in Cell Biology, 2018, 144, 349-370.	0.5	18
16	Design principles of a microtubule polymerase. ELife, 2018, 7, .	2.8	45
17	An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. ELife, 2018, 7, .	2.8	46
18	Histone H4 Facilitates the Proteolysis of the Budding Yeast CENP-ACse4 Centromeric Histone Variant. Genetics, 2017, 205, 113-124.	1.2	13

SUSAN BIGGINS

#	Article	IF	CITATIONS
19	Stochastic Modeling Yields a Mechanistic Framework for Spindle Attachment Error Correction in Budding Yeast Mitosis. Cell Systems, 2017, 4, 645-650.e5.	2.9	15
20	What Silences the Spindle Checkpoint? A Single Particle Study. Biophysical Journal, 2017, 112, 431a.	0.2	0
21	A TOG Protein Confers Tension Sensitivity to Kinetochore-Microtubule Attachments. Cell, 2016, 165, 1428-1439.	13.5	158
22	Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects. PLoS Genetics, 2016, 12, e1005930.	1.5	39
23	Under Tension: Kinetochores and Basic Research. Genetics, 2015, 200, 681-682.	1.2	3
24	Measuring Kinetochore–Microtubule Interaction In Vitro. Methods in Enzymology, 2014, 540, 321-337.	0.4	4
25	Signalling dynamics in the spindle checkpoint response. Nature Reviews Molecular Cell Biology, 2014, 15, 736-748.	16.1	278
26	Kinetochores require oligomerization of Dam1 complex to maintain microtubule attachments against tension and promote biorientation. Nature Communications, 2014, 5, 4951.	5.8	51
27	The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A. Genes and Development, 2014, 28, 1815-1826.	2.7	66
28	Sister kinetochores are mechanically fused during meiosis I in yeast. Science, 2014, 346, 248-251.	6.0	68
29	Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes and Development, 2014, 28, 140-152.	2.7	175
30	Editorial overview: Cell architecture: Cellular organization and function. Current Opinion in Cell Biology, 2014, 26, v-vii.	2.6	0
31	The Composition, Functions, and Regulation of the Budding Yeast Kinetochore. Genetics, 2013, 194, 817-846.	1.2	170
32	Kinetochore Function and Chromosome Segregation Rely on Critical Residues in Histones H3 and H4 in Budding Yeast. Genetics, 2013, 195, 795-807.	1.2	23
33	The Mub1/Ubr2 Ubiquitin Ligase Complex Regulates the Conserved Dsn1 Kinetochore Protein. PLoS Genetics, 2013, 9, e1003216.	1.5	29
34	Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7282-7287.	3.3	76
35	The Aurora B Kinase Promotes Inner and Outer Kinetochore Interactions in Budding Yeast. Genetics, 2013, 194, 785-789.	1.2	57
36	Sue Biggins: How kinetochores keep control of mitosis. Journal of Cell Biology, 2012, 196, 668-669.	2.3	0

SUSAN BIGGINS

#	Article	IF	CITATIONS
37	The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nature Structural and Molecular Biology, 2012, 19, 925-929.	3.6	77
38	Biophysical Study of Native Yeast Kinetochores Indicates Distinct Roles for Phospho-Regulation of Core Microtubule-Binding Subcomplexes. Biophysical Journal, 2012, 102, 700a-701a.	0.2	0
39	Reconstituting the kinetochore–microtubule interface: what, why, and how. Chromosoma, 2012, 121, 235-250.	1.0	16
40	Phosphoregulation of Spc105 by Mps1 and PP1 Regulates Bub1 Localization to Kinetochores. Current Biology, 2012, 22, 900-906.	1.8	328
41	An Efficient Purification System for Native Minichromosome from Saccharomyces cerevisiae. Methods in Molecular Biology, 2012, 833, 115-123.	0.4	22
42	Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature, 2010, 468, 576-579.	13.7	408
43	Cdc14-Dependent Dephosphorylation of a Kinetochore Protein Prior to Anaphase in <i>Saccharomyces cerevisiae</i> . Genetics, 2010, 186, 1487-1491.	1.2	20
44	An E3 Ubiquitin Ligase Prevents Ectopic Localization of the Centromeric Histone H3 Variant via the Centromere Targeting Domain. Molecular Cell, 2010, 40, 455-464.	4.5	176
45	Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes and Development, 2009, 23, 2887-2899.	2.7	99
46	Pericentromeric Sister Chromatid Cohesion Promotes Kinetochore Biorientation. Molecular Biology of the Cell, 2009, 20, 3818-3827.	0.9	83
47	Analysis of Ipl1-Mediated Phosphorylation of the Ndc80 Kinetochore Protein in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 183, 1591-1595.	1.2	64
48	Protein Phosphatase 1 Regulates Exit from the Spindle Checkpoint in Budding Yeast. Current Biology, 2009, 19, 1182-1187.	1.8	138
49	Post-Translational Modifications that Regulate Kinetochore Activity. , 2009, , 1-51.		1
50	Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proceedings of the United States of America, 2007, 104, 14706-14711.	3.3	240
51	The Overexpression of a Saccharomyces cerevisiae Centromeric Histone H3 Variant Mutant Protein Leads to a Defect in Kinetochore Biorientation. Genetics, 2007, 175, 513-525.	1.2	29
52	A Pathway Containing the Ipl1/Aurora Protein Kinase and the Spindle Midzone Protein Ase1 Regulates Yeast Spindle Assembly. Developmental Cell, 2007, 13, 433-445.	3.1	60
53	Microtubule Capture: A Concerted Effort. Cell, 2006, 127, 1105-1108.	13.5	33
54	The NoCut Pathway Links Completion of Cytokinesis to Spindle Midzone Function to Prevent Chromosome Breakage. Cell, 2006, 125, 85-98.	13.5	267

Susan Biggins

#	Article	IF	CITATIONS
55	The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nature Cell Biology, 2006, 8, 78-83.	4.6	272
56	Glc7/Protein Phosphatase 1 Regulatory Subunits Can Oppose the Ipl1/Aurora Protein Kinase by Redistributing Glc7. Molecular and Cellular Biology, 2006, 26, 2648-2660.	1.1	102
57	The spindle checkpoint: tension versus attachment. Trends in Cell Biology, 2005, 15, 486-493.	3.6	257
58	De Novo Kinetochore Assembly Requires the Centromeric Histone H3 Variant. Molecular Biology of the Cell, 2005, 16, 5649-5660.	0.9	67
59	Histone variants: deviants?. Genes and Development, 2005, 19, 295-316.	2.7	296
60	Correcting SYNful attachments. Nature Cell Biology, 2004, 6, 181-183.	4.6	3
61	Proteolysis Contributes to the Exclusive Centromere Localization of the Yeast Cse4/CENP-A Histone H3 Variant. Current Biology, 2004, 14, 1968-1972.	1.8	191
62	Captivating Capture: How Microtubules Attach to Kinetochores. Current Biology, 2003, 13, R449-R460.	1.8	99
63	How to Successfully Start a Lab. Cell, 2003, 114, 16-17.	13.5	0
64	An Mtw1 Complex Promotes Kinetochore Biorientation that Is Monitored by the Ipl1/Aurora Protein Kinase. Developmental Cell, 2003, 5, 735-745.	3.1	94
65	The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. Journal of Cell Biology, 2003, 160, 329-339.	2.3	133
66	Mutation ofYCS4, a Budding Yeast Condensin Subunit, Affects Mitotic and Nonmitotic Chromosome Behavior. Molecular Biology of the Cell, 2002, 13, 632-645.	0.9	167
67	Top-SUMO Wrestles Centromeric Cohesion. Developmental Cell, 2002, 3, 4-6.		10
		3.1	
68	The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes and Development, 2001, 15, 3118-3129.	3.1 2.7	363
68 69	The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle		363 133
	The budding yeast protein kinase lpl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes and Development, 2001, 15, 3118-3129. Genes Involved in Sister Chromatid Separation and Segregation in the Budding Yeast	2.7	
69	The budding yeast protein kinase lpl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes and Development, 2001, 15, 3118-3129. Genes Involved in Sister Chromatid Separation and Segregation in the Budding Yeast <i>Saccharomyces cerevisiae </i> . Genetics, 2001, 159, 453-470.	2.7 1.2	133

SUSAN BIGGINS

#	Article	IF	CITATIONS
73	The Yeast Centrin, Cdc31p, and the Interacting Protein Kinase, Kic1p, Are Required for Cell Integrity. Journal of Cell Biology, 1998, 143, 751-765.	2.3	76
74	Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center Journal of Cell Biology, 1996, 133, 1331-1346.	2.3	164
75	Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body Journal of Cell Biology, 1994, 125, 843-852.	2.3	94
76	Unravelling the tangled web at the microtubule-organizing center. Current Opinion in Cell Biology, 1993, 5, 105-115.	2.6	52