List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4548958/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the state of the art in missing data imputation for clinical data. Briefings in Bioinformatics, 2022, 23, .	6.5	42
2	Under-specification as the source of ambiguity and vagueness in narrative phenotype algorithm definitions. BMC Medical Informatics and Decision Making, 2022, 22, 23.	3.0	1
3	Agingâ€related cell typeâ€specific pathophysiologic immune responses that exacerbate disease severity in aged COVIDâ€19 patients. Aging Cell, 2022, 21, e13544.	6.7	11
4	Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 2022, 13, 405.	12.8	92
5	Proactive vs Reactive Machine Learning in Health Care. JAMA - Journal of the American Medical Association, 2022, 327, 623.	7.4	16
6	MedGCN: Medication recommendation and lab test imputation via graph convolutional networks. Journal of Biomedical Informatics, 2022, 127, 104000.	4.3	23
7	Abstract P2-09-15: Frequency of germline mutations in breast cancer susceptibility genes among women under age 50 presenting with parity associated breast cancer. Cancer Research, 2022, 82, P2-09-15-P2-09-15.	0.9	0
8	Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biology, 2022, 23, 83.	8.8	66
9	Ductal Carcinoma In Situ of Breast: From Molecular Etiology to Therapeutic Management. Endocrinology, 2022, 163, .	2.8	5
10	Using an Unsupervised Clustering Model to Detect the Early Spread of SARS-CoV-2 Worldwide. Genes, 2022, 13, 648.	2.4	1
11	Advances in Machine Learning Approaches to Heart Failure with Preserved Ejection Fraction. Heart Failure Clinics, 2022, 18, 287-300.	2.1	9
12	Association of Pathogenic Variants in Hereditary Cancer Genes With Multiple Diseases. JAMA Oncology, 2022, 8, 835.	7.1	25
13	Generating and Reporting Electronic Clinical Quality Measures from Electronic Health Records: Strategies from EvidenceNOW Cooperatives. Applied Clinical Informatics, 2022, 13, 485-494.	1.7	1
14	Distinguishing Admissions Specifically for COVID-19 From Incidental SARS-CoV-2 Admissions: National Retrospective Electronic Health Record Study. Journal of Medical Internet Research, 2022, 24, e37931.	4.3	33
15	Development and validation of <i>MicrobEx</i> : an open-source package for microbiology culture concept extraction. JAMIA Open, 2022, 5, .	2.0	1
16	Machine Learning in Causal Inference: Application in Pharmacovigilance. Drug Safety, 2022, 45, 459-476.	3.2	7
17	Psychiatric manifestations of rare variation in medically actionable genes: a PheWAS approach. BMC Genomics, 2022, 23, 385.	2.8	1
18	A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder. Artificial Intelligence in Medicine, 2021, 112, 102006.	6.5	19

#	Article	IF	CITATIONS
19	Using Tweets to Understand How COVID-19–Related Health Beliefs Are Affected in the Age of Social Media: Twitter Data Analysis Study. Journal of Medical Internet Research, 2021, 23, e26302.	4.3	37
20	Infobuttons for Genomic Medicine: Requirements and Barriers. Applied Clinical Informatics, 2021, 12, 383-390.	1.7	3
21	What Every Reader Should Know About Studies Using Electronic Health Record Data but May Be Afraid to Ask. Journal of Medical Internet Research, 2021, 23, e22219.	4.3	61
22	Evaluation of structured data from electronic health records to identify clinical classification criteria attributes for systemic lupus erythematosus. Lupus Science and Medicine, 2021, 8, e000488.	2.7	6
23	Unsupervised phenotyping of sepsis using nonnegative matrix factorization of temporal trends from a multivariate panel of physiological measurements. BMC Medical Informatics and Decision Making, 2021, 21, 95.	3.0	8
24	Validation of an internationally derived patient severity phenotype to support COVID-19 analytics from electronic health record data. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1411-1420.	4.4	37
25	International Changes in COVID-19 Clinical Trajectories Across 315 Hospitals and 6 Countries: Retrospective Cohort Study. Journal of Medical Internet Research, 2021, 23, e31400.	4.3	19
26	International Analysis of Electronic Health Records of Children and Youth Hospitalized With COVID-19 Infection in 6 Countries. JAMA Network Open, 2021, 4, e2112596.	5.9	33
27	Genomic considerations for FHIR®; eMERGE implementation lessons. Journal of Biomedical Informatics, 2021, 118, 103795.	4.3	15
28	A Mendelian Randomization Approach Using 3-HMG-Coenzyme-A Reductase Gene Variation to Evaluate the Association of Statin-Induced Low-Density Lipoprotein Cholesterol Lowering With Noncardiovascular Disease Phenotypes. JAMA Network Open, 2021, 4, e2112820.	5.9	16
29	National Trends in Disease Activity for COVID-19 Among Children in the US. Frontiers in Pediatrics, 2021, 9, 700656.	1.9	3
30	Facilitating Genetics Aware Clinical Decision Support: Putting the eMERGE Infrastructure into Practice. ACI Open, 2021, 05, e54-e58.	0.5	0
31	Desiderata for the development of next-generation electronic health record phenotype libraries. GigaScience, 2021, 10, .	6.4	17
32	Characterizing phenotypic abnormalities associated with high-risk individuals developing lung cancer using electronic health records from the <i>All of Us</i> researcher workbench. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2313-2324.	4.4	2
33	Deep learning for cancer type classification and driver gene identification. BMC Bioinformatics, 2021, 22, 491.	2.6	14
34	Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19. Scientific Reports, 2021, 11, 20238.	3.3	10
35	Optimizing the evaluation of gene-targeted panels for tumor mutational burden estimation. Scientific Reports, 2021, 11, 21072.	3.3	9
36	Antiplatelet Medications and Biomarkers of Hemostasis May Explain the Association of Hematoma Appearance and Subsequent Hematoma Expansion After Intracerebral Hemorrhage. Neurocritical Care, 2021, , 1.	2.4	0

#	Article	IF	CITATIONS
37	Integration of NLP2FHIR Representation with Deep Learning Models for EHR Phenotyping: A Pilot Study on Obesity Datasets. AMIA Summits on Translational Science Proceedings, 2021, 2021, 410-419.	0.4	0
38	Phenoflow: A Microservice Architecture for Portable Workflow-based Phenotype Definitions. AMIA Summits on Translational Science Proceedings, 2021, 2021, 142-151.	0.4	2
39	CQL4NLP: Development and Integration of FHIR NLP Extensions in Clinical Quality Language for EHR-driven Phenotyping. AMIA Summits on Translational Science Proceedings, 2021, 2021, 624-633.	0.4	1
40	802â€An electronic health record-based approach to identify and characterize patients with immune checkpoint inhibitor-associated arthritis. , 2021, 9, A838-A839.		0
41	Development of a repository of computable phenotype definitions using the clinical quality language. JAMIA Open, 2021, 4, ooab094.	2.0	5
42	Spatiotemporal localization of proteins in mycobacteria. Cell Reports, 2021, 37, 110154.	6.4	16
43	Applicability of Pharmacogenomically Guided Medication Treatment during Hospitalization of At-Risk Minority Patients. Journal of Personalized Medicine, 2021, 11, 1343.	2.5	2
44	Early Prediction of Mortality in Critical Care Setting in Sepsis Patients Using Structured Features and Unstructured Clinical Notes. , 2021, , .		3
45	Unsupervised clustering analysis of SARS-Cov-2 population structure reveals six major subtypes at early stage across the world. , 2021, , .		0
46	Supervised subgraph augmented non-negative matrix factorization for interpretable manufacturing time series data analytics. IISE Transactions, 2020, 52, 120-131.	2.4	3
47	Effects of 2 Forms of Practice Facilitation on Cardiovascular Prevention in Primary Care. Medical Care, 2020, 58, 344-351.	2.4	14
48	Predictive modeling of bacterial infections and antibiotic therapy needs in critically ill adults. Journal of Biomedical Informatics, 2020, 109, 103540.	4.3	12
49	<scp>Dataâ€driven</scp> discovery of probable Alzheimer's disease and related dementia subphenotypes using electronic health records. Learning Health Systems, 2020, 4, e10246.	2.0	12
50	Participant choices for return of genomic results in the eMERGE Network. Genetics in Medicine, 2020, 22, 1821-1829.	2.4	25
51	A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia. Nature Medicine, 2020, 26, 1375-1379.	30.7	49
52	Subphenotyping depression using machine learning and electronic health records. Learning Health Systems, 2020, 4, e10241.	2.0	12
53	Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer, 2020, 6, 49.	5.2	10
54	Toward <scp>crossâ€platform</scp> electronic health record <scp>â€driven</scp> phenotyping using Clinical Quality Language. Learning Health Systems, 2020, 4, e10233.	2.0	17

#	Article	IF	CITATIONS
55	Derivation and Validation of Novel Phenotypes of Multiple Organ Dysfunction Syndrome in Critically Ill Children. JAMA Network Open, 2020, 3, e209271.	5.9	45
56	Hyperchloremia in critically ill patients: association with outcomes and prediction using electronic health record data. BMC Medical Informatics and Decision Making, 2020, 20, 302.	3.0	8
57	Performanceâ€weightedâ€voting model: An ensemble machine learning method for cancer type classification using wholeâ€exome sequencing mutation. Quantitative Biology, 2020, 8, 347-358.	0.5	14
58	Genetic-Based Hypertension Subtype Identification Using Informative SNPs. Genes, 2020, 11, 1265.	2.4	5
59	Prediction of breast cancer distant recurrence using natural language processing and knowledge-guided convolutional neural network. Artificial Intelligence in Medicine, 2020, 110, 101977.	6.5	50
60	Somatic genetic aberrations in benign breast disease and the risk of subsequent breast cancer. Npj Breast Cancer, 2020, 6, 24.	5.2	10
61	A novel normalization and differential abundance test framework for microbiome data. Bioinformatics, 2020, 36, 3959-3965.	4.1	12
62	Facilitating reproducible research through direct connection of data analysis with manuscript preparation: StatTag for connecting statistical software to Microsoft Word. JAMIA Open, 2020, 3, 342-358.	2.0	2
63	A Comparison of Pre-trained Vision-and-Language Models for Multimodal Representation Learning across Medical Images and Reports. , 2020, , .		35
64	Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes. BMC Medical Informatics and Decision Making, 2020, 20, 295.	3.0	51
65	The Genomic Medical Record and Omic Ancillary Systems. Computers in Health Care, 2020, , 253-275.	0.3	1
66	Solutions for Unexpected Challenges Encountered when Integrating Research Genomics Results into the EHR. ACI Open, 2020, 04, e132-e135.	0.5	2
67	Natural Language Processing for EHR-Based Computational Phenotyping. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 139-153.	3.0	123
68	Facilitating phenotype transfer using a common data model. Journal of Biomedical Informatics, 2019, 96, 103253.	4.3	49
69	Cancer classification and pathway discovery using non-negative matrix factorization. Journal of Biomedical Informatics, 2019, 96, 103247.	4.3	24
70	Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries. Journal of Biomedical Informatics, 2019, 99, 103310.	4.3	48
71	Making work visible for electronic phenotype implementation: Lessons learned from the eMERGE network. Journal of Biomedical Informatics, 2019, 99, 103293.	4.3	27
72	Challenges to electronic clinical quality measurement using third-party platforms in primary care practices: the healthy hearts in the heartland experience. JAMIA Open, 2019, 2, 423-428.	2.0	8

#	Article	IF	CITATIONS
73	Genomic Information for Clinicians in the Electronic Health Record: Lessons Learned From the Clinical Genome Resource Project and the Electronic Medical Records and Genomics Network. Frontiers in Genetics, 2019, 10, 1059.	2.3	40
74	Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1632-1636.	4.4	46
75	Pharmacogenomic clinical decision support design and multi-site process outcomes analysis in the eMERGE Network. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 143-148.	4.4	28
76	Provider perspectives on the integration of patient-reported outcomes in an electronic health record. JAMIA Open, 2019, 2, 73-80.	2.0	65
77	Identifying Breast Cancer Distant Recurrences from Electronic Health Records Using Machine Learning. Journal of Healthcare Informatics Research, 2019, 3, 283-299.	7.6	15
78	Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. BMC Medical Informatics and Decision Making, 2019, 19, 71.	3.0	76
79	Developing a portable natural language processing based phenotyping system. BMC Medical Informatics and Decision Making, 2019, 19, 78.	3.0	32
80	Efficient Genomic Interval Queries Using Augmented Range Trees. Scientific Reports, 2019, 9, 5059.	3.3	4
81	Classifying relations in clinical narratives using segment graph convolutional and recurrent neural networks (Seg-GCRNs). Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 262-268.	4.4	38
82	An ancillary genomics system to support the return of pharmacogenomic results. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 306-310.	4.4	18
83	Phenotyping Multiple Organ Dysfunction Syndrome Using Temporal Trends in Critically Ill Children. , 2019, 2019, 968-972.		4
84	Using Machine Learning to Predict Hyperchloremia in Critically Ill Patients. , 2019, 2019, 1703-1707.		2
85	Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization. Bioinformatics, 2019, 35, 1395-1403.	4.1	12
86	Predicting ICU readmission using grouped physiological and medication trends. Artificial Intelligence in Medicine, 2019, 95, 27-37.	6.5	47
87	Recent Advances in Supervised Dimension Reduction: A Survey. Machine Learning and Knowledge Extraction, 2019, 1, 341-358.	5.0	72
88	Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes and Structured Multivariate Physiological Measurements. Studies in Health Technology and Informatics, 2019, 264, 368-372.	0.3	25
89	Predictive Modeling of the Risk of Acute Kidney Injury in Critical Care: A Systematic Investigation of The Class Imbalance Problem. AMIA Summits on Translational Science Proceedings, 2019, 2019, 809-818.	0.4	2
90	Rich Text Formatted EHR Narratives: A Hidden and Ignored Trove. Studies in Health Technology and Informatics, 2019, 264, 472-476.	0.3	1

#	Article	IF	CITATIONS
91	Using Machine Learning to Integrate Socio-Behavioral Factors in Predicting Cardiovascular-Related Mortality Risk. Studies in Health Technology and Informatics, 2019, 264, 433-437.	0.3	3
92	3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 645-653.	4.4	73
93	Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 93-98.	4.4	62
94	Deep Generative Classifiers for Thoracic Disease Diagnosis with Chest X-ray Images. , 2018, 2018, 1209-1214.		12
95	Supervised Nonnegative Matrix Factorization to Predict ICU Mortality Risk. , 2018, 2018, 1189-1194.		13
96	Using natural language processing and machine learning to identify breast cancer local recurrence. BMC Bioinformatics, 2018, 19, 498.	2.6	60
97	Characterizing Design Patterns of EHR-Driven Phenotype Extraction Algorithms. , 2018, , .		2
98	Implementing a Portable Clinical NLP System with a Common Data Model a Lisp Perspective. , 2018, 2018, 461-466.		2
99	Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes. , 2018, 2018, 683-686.		34
100	Improving the Accuracy of Scores to Predict Gastrostomy after Intracerebral Hemorrhage with Machine Learning. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 3570-3574.	1.6	7
101	A case study evaluating the portability of an executable computable phenotype algorithm across multiple institutions and electronic health record environments. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1540-1546.	4.4	29
102	Big Data and Data Science in Critical Care. Chest, 2018, 154, 1239-1248.	0.8	184
103	Conjugated equine estrogen and medroxyprogesterone acetate are associated with decreased risk of breast cancer relative to bioidentical hormone therapy and controls. PLoS ONE, 2018, 13, e0197064.	2.5	7
104	Primary Care Practices' Abilities And Challenges In Using Electronic Health Record Data For Quality Improvement. Health Affairs, 2018, 37, 635-643.	5.2	66
105	Portable Phenotyping System: A Portable Machine-Learning Approach to i2b2 Obesity Challenge. , 2018, ,		3
106	Empowering genomic medicine by establishing critical sequencing result data flows: the eMERGE example. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1375-1381.	4.4	21
107	Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease. AMIA Annual Symposium proceedings, 2018, 2018, 1147-1156.	0.2	16
108	Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Translational Research, 2017, 10, 305-312.	2.4	34

#	Article	IF	CITATIONS
109	Recurrent neural networks for classifying relations in clinical notes. Journal of Biomedical Informatics, 2017, 72, 85-95.	4.3	119
110	Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Safety, 2017, 40, 1075-1089.	3.2	133
111	Healthcare provider education to support integration of pharmacogenomics in practice: the eMERGE Network experience. Pharmacogenomics, 2017, 18, 1013-1025.	1.3	55
112	Genome-wide study of resistant hypertension identified from electronic health records. PLoS ONE, 2017, 12, e0171745.	2.5	36
113	Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application. JMIR Medical Informatics, 2017, 5, e27.	2.6	2
114	Contralateral Breast Cancer Event Detection Using Nature Language Processing. AMIA Annual Symposium proceedings, 2017, 2017, 1885-1892.	0.2	8
115	Classifying Clinical Trial Eligibility Criteria to Facilitate Phased Cohort Identification Using Clinical Data Repositories. AMIA Annual Symposium proceedings, 2017, 2017, 1754-1763.	0.2	4
116	Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records. Biomedical Informatics Insights, 2016, 8, BII.S38916.	4.6	4
117	Practical considerations for implementing genomic information resources. Applied Clinical Informatics, 2016, 07, 870-882.	1.7	21
118	PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 1046-1052.	4.4	284
119	A multi-site cognitive task analysis for biomedical query mediation. International Journal of Medical Informatics, 2016, 93, 74-84.	3.3	1
120	Developing a data element repository to support EHR-driven phenotype algorithm authoring and execution. Journal of Biomedical Informatics, 2016, 62, 232-242.	4.3	15
121	A multi-institution evaluation of clinical profile anonymization. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, e131-e137.	4.4	12
122	The genomic CDS sandbox: An assessment among domain experts. Journal of Biomedical Informatics, 2016, 60, 84-94.	4.3	4
123	A Decompositional Approach to Executing Quality Data Model Algorithms on the i2b2 Platform. AMIA Summits on Translational Science Proceedings, 2016, 2016, 167-75.	0.4	4
124	Review and evaluation of electronic health records-driven phenotype algorithm authoring tools for clinical and translational research. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1251-1260.	4.4	30
125	Desiderata for computable representations of electronic health records-driven phenotype algorithms. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1220-1230.	4.4	110
126	CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1231-1242.	4.4	73

#	Article	IF	CITATIONS
127	A Modular Architecture for Electronic Health Record-Driven Phenotyping. AMIA Summits on Translational Science Proceedings, 2015, 2015, 147-51.	0.4	13
128	A Prototype for Executable and Portable Electronic Clinical Quality Measures Using the KNIME Analytics Platform. AMIA Summits on Translational Science Proceedings, 2015, 2015, 127-31.	0.4	10
129	Genetic Variants Associated with Serum Thyroid Stimulating Hormone (TSH) Levels in European Americans and African Americans from the eMERGE Network. PLoS ONE, 2014, 9, e111301.	2.5	34
130	Anatomic and Advanced Adenoma Detection Rates as Quality Metrics Determined via Natural Language Processing. American Journal of Gastroenterology, 2014, 109, 1844-1849.	0.4	42
131	A rural community's involvement in the design and usability testing of a computerâ€based informed consent process for the personalized medicine research project. American Journal of Medical Genetics, Part A, 2014, 164, 129-140.	1.2	14
132	Design and Anticipated Outcomes of the eMERGE-PGx Project: A Multicenter Pilot for Preemptive Pharmacogenomics in Electronic Health Record Systems. Clinical Pharmacology and Therapeutics, 2014, 96, 482-489.	4.7	223
133	Design patterns for the development of electronic health record-driven phenotype extraction algorithms. Journal of Biomedical Informatics, 2014, 51, 280-286.	4.3	55
134	The Electronic Health Record for Translational Research. Journal of Cardiovascular Translational Research, 2014, 7, 607-614.	2.4	24
135	Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. Molecular Vision, 2014, 20, 1281-95.	1.1	27
136	A Template for Authoring and Adapting Genomic Medicine Content in the eMERGE Infobutton Project. AMIA Annual Symposium proceedings, 2014, 2014, 944-53.	0.2	9
137	What Is Asked in Clinical Data Request Forms? A Multi-site Thematic Analysis of Forms Towards Better Data Access Support. AMIA Annual Symposium proceedings, 2014, 2014, 616-25.	0.2	5
138	Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nature Biotechnology, 2013, 31, 1102-1111.	17.5	846
139	Stakeholder engagement: a key component of integrating genomic information into electronic health records. Genetics in Medicine, 2013, 15, 792-801.	2.4	64
140	Practical challenges in integrating genomic data into the electronic health record. Genetics in Medicine, 2013, 15, 772-778.	2.4	85
141	Genome- and Phenome-Wide Analyses of Cardiac Conduction Identifies Markers of Arrhythmia Risk. Circulation, 2013, 127, 1377-1385.	1.6	167
142	Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, e147-e154.	4.4	346
143	Importance of multi-modal approaches to effectively identify cataract cases from electronic health records. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, 225-234.	4.4	106
144	Development of an optical character recognition pipeline for handwritten form fields from an electronic health record. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, e90-e95.	4.4	36

#	Article	IF	CITATIONS
145	An evaluation of the NQF Quality Data Model for representing Electronic Health Record driven phenotyping algorithms. AMIA Annual Symposium proceedings, 2012, 2012, 911-20.	0.2	32
146	Quality Control Procedures for Genomeâ€Wide Association Studies. Current Protocols in Human Genetics, 2011, 68, Unit1.19.	3.5	259
147	Variants Near FOXE1 Are Associated with Hypothyroidism and Other Thyroid Conditions: Using Electronic Medical Records for Genome- and Phenome-wide Studies. American Journal of Human Genetics, 2011, 89, 529-542.	6.2	232
148	Implementation of workflow engine technology to deliver basic clinical decision support functionality. BMC Medical Research Methodology, 2011, 11, 43.	3.1	27
149	Cataract research using electronic health records. BMC Ophthalmology, 2011, 11, 32.	1.4	38
150	Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality. Genetic Epidemiology, 2011, 35, 887-898.	1.3	71
151	Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium. Science Translational Medicine, 2011, 3, 79re1.	12.4	302
152	Assessing the spatial implications of interactions among strategic forest management options using a Windows-based harvest simulator. Computers and Electronics in Agriculture, 2002, 33, 179-196.	7.7	20
153	Design and validation of a FHIR-based EHR-driven phenotyping toolbox. Journal of the American Medical Informatics Association: JAMIA, 0, , .	4.4	4