
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/454883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lysosomal Changes in Mitosis. Cells, 2022, 11, 875.	4.1	6
2	Unraveling membrane properties at the organelle-level with LipidDyn. Computational and Structural Biotechnology Journal, 2022, 20, 3604-3614.	4.1	8
3	Identification of lysosomeâ€ŧargeting drugs with antiâ€inflammatory activity as potential invasion inhibitors of treatment resistant HER2 positive cancers. Cellular Oncology (Dordrecht), 2021, 44, 805-820.	4.4	4
4	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
5	They Might Cut It—Lysosomes and Autophagy in Mitotic Progression. Frontiers in Cell and Developmental Biology, 2021, 9, 727538.	3.7	3
6	Control of mitosis, inflammation, and cell motility by limited leakage of lysosomes. Current Opinion in Cell Biology, 2021, 71, 29-37.	5.4	25
7	Systematical analysis reveals a strong cancer relevance of CREB1-regulated genes. Cancer Cell International, 2021, 21, 530.	4.1	10
8	Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death and Differentiation, 2020, 27, 1134-1153.	11.2	57
9	Antihistamines and Ovarian Cancer Survival: Nationwide Cohort Study and in Vitro Cell Viability Assay. Journal of the National Cancer Institute, 2020, 112, 964-967.	6.3	24
10	Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers, 2020, 12, 2437.	3.7	44
11	Cationic amphiphilic drugs induce elevation in lysoglycerophospholipid levels and cell death in leukemia cells. Metabolomics, 2020, 16, 91.	3.0	21
12	pH gradient reversal fuels cancer progression. International Journal of Biochemistry and Cell Biology, 2020, 125, 105796.	2.8	26
13	Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2020, 31, 894-907.	2.8	24
14	Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nature Communications, 2020, 11, 229.	12.8	51
15	DNA-dependent protein kinase regulates lysosomal AMP-dependent protein kinase activation and autophagy. Autophagy, 2020, 16, 1871-1888.	9.1	29
16	SnapShot: Lysosomal Functions. Cell, 2020, 181, 748-748.e1.	28.9	31
17	Targeting Cancer Lysosomes with Good Old Cationic Amphiphilic Drugs. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 107-152.	1.6	12

18 Detection of Lysosomal Membrane Permeabilization. , 2020, , 177-198.

#	Article	IF	CITATIONS
19	How to Choose the Right Inducible Gene Expression System for Mammalian Studies?. Cells, 2019, 8, 796.	4.1	74
20	The ubiquitin onjugating enzyme <scp>UBE</scp> 2 <scp>QL</scp> 1 coordinates lysophagy in response to endolysosomal damage. EMBO Reports, 2019, 20, e48014.	4.5	71
21	Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites. Nature Communications, 2019, 10, 4176.	12.8	61
22	Cell Death Induced by Cationic Amphiphilic Drugs Depends on Lysosomal Ca2+ Release and Cyclic AMP. Molecular Cancer Therapeutics, 2019, 18, 1602-1614.	4.1	28
23	Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Progress in Lipid Research, 2019, 74, 18-30.	11.6	67
24	Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Scientific Reports, 2019, 9, 6726.	3.3	73
25	Antihistamine use and risk of ovarian cancer: A population-based case-control study. Maturitas, 2019, 120, 47-52.	2.4	7
26	Release of transcriptional repression via ErbB2-induced, SUMO-directed phosphorylation of myeloid zinc finger-1 serine 27 activates lysosome redistribution and invasion. Oncogene, 2019, 38, 3170-3184.	5.9	17
27	Abstract 4593: Inhibition of invasion of HER2-positive breast cancer cells by lysosome targeting drugs. , 2019, , .		Ο
28	Proton pump inhibitor use and cancer mortality. International Journal of Cancer, 2018, 143, 1315-1326.	5.1	37
29	Let-7 microRNA controls invasion-promoting lysosomal changes via the oncogenic transcription factor myeloid zinc finger-1. Oncogenesis, 2018, 7, 14.	4.9	20
30	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
31	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
32	Human P2Y11 Expression Level Affects Human P2X7 Receptor-Mediated Cell Death. Frontiers in Immunology, 2018, 9, 1159.	4.8	17
33	STAT3 associates with vacuolar H+-ATPase and regulates cytosolic and lysosomal pH. Cell Research, 2018, 28, 996-1012.	12.0	77
34	Quantitative Profiling of Lysosomal Lipidome by Shotgun Lipidomics. Methods in Molecular Biology, 2017, 1594, 19-34.	0.9	15
35	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
36	Ragulator—a multifaceted regulator of lysosomal signaling and trafficking. Journal of Cell Biology, 2017, 216, 3895-3898.	5.2	25

#	Article	IF	CITATIONS
37	Renilla Luciferase-LC3 Based Reporter Assay for Measuring Autophagic Flux. Methods in Enzymology, 2017, 588, 1-13.	1.0	8
38	The Mutational Landscape of the Oncogenic MZF1 SCAN Domain in Cancer. Frontiers in Molecular Biosciences, 2016, 3, 78.	3.5	34
39	Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy, 2016, 12, 833-849.	9.1	52
40	Discovery of Small Molecules That Induce Lysosomal Cell Death in Cancer Cell Lines Using an Image-Based Screening Platform. Assay and Drug Development Technologies, 2016, 14, 489-510.	1.2	19
41	Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12, 2213-2229.	9.1	118
42	Heat shock protein–based therapy as a potential candidate for treating the sphingolipidoses. Science Translational Medicine, 2016, 8, 355ra118.	12.4	137
43	Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment. EBioMedicine, 2016, 9, 130-139.	6.1	92
44	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
45	Lysosomes in cancer—living on the edge (of the cell). Current Opinion in Cell Biology, 2016, 39, 69-76.	5.4	103
46	Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Research, 2016, 44, 2214-2226.	14.5	38
47	Abstract 1999: Regulation of the oncogenic, invasion-promoting transcription factor myeloid zinc finger-1 (MZF1) in breast cancer by microRNAs. , 2016, , .		0
48	Methods for the quantification of lysosomal membrane permeabilization: A hallmark of lysosomal cell death. Methods in Cell Biology, 2015, 126, 261-285.	1.1	66
49	Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy, 2015, 11, 1408-1424.	9.1	281
50	A Method to Monitor Lysosomal Membrane Permeabilization by Immunocytochemistry. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086181.	0.3	7
51	Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and β- <i>N</i> -Acetyl-Glucosaminidase Activity Measurements. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086165.	0.3	12
52	Methods for Probing Lysosomal Membrane Permeabilization. Cold Spring Harbor Protocols, 2015, 2015, pdb.top070367.	0.3	6
53	Visualizing Lysosomal Membrane Permeabilization by Fluorescent Dextran Release: Figure 1 Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086173.	0.3	12
54	Abstract 1975: Role and activation mechanisms of myeloid zinc finger-1 (MZF1) in ErbB2-induced breast		0

cancer invasion., 2015,,.

#	Article	lF	CITATIONS
55	KIAA1524/CIP2A promotes cancer growth by coordinating the activities of MTORC1 and MYC. Autophagy, 2014, 10, 1352-1354.	9.1	21
56	Screening and identification of small molecule inhibitors ofÂErbB2â€induced invasion. Molecular Oncology, 2014, 8, 1703-1718.	4.6	13
57	CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation. Journal of Cell Biology, 2014, 204, 713-727.	5.2	64
58	Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1344-1361.	2.6	39
59	S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nature Communications, 2014, 5, 3795.	12.8	175
60	Targeting lons-Induced Autophagy in Cancer. Cancer Cell, 2014, 26, 599-600.	16.8	10
61	Abstract 3149: Targeting ERBB2-induced, lysosome-mediated invasion. , 2014, , .		0
62	Cancer-associated lysosomal changes: friends or foes?. Oncogene, 2013, 32, 1995-2004.	5.9	232
63	Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Letters, 2013, 332, 265-274.	7.2	159
64	Transformation-Associated Changes in Sphingolipid Metabolism Sensitize Cells to Lysosomal Cell Death Induced by Inhibitors of Acid Sphingomyelinase. Cancer Cell, 2013, 24, 379-393.	16.8	281
65	IFNB1/interferon-β-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function. Autophagy, 2013, 9, 287-302.	9.1	67
66	Lysosomal cell death at a glance. Journal of Cell Science, 2013, 126, 1905-1912.	2.0	492
67	Sunitinib and SU11652 Inhibit Acid Sphingomyelinase, Destabilize Lysosomes, and Inhibit Multidrug Resistance. Molecular Cancer Therapeutics, 2013, 12, 2018-2030.	4.1	55
68	LEDGF (p75) promotes DNA-end resection and homologous recombination. Nature Structural and Molecular Biology, 2012, 19, 803-810.	8.2	169
69	Identification of Autophagosome-associated Proteins and Regulators by Quantitative Proteomic Analysis and Genetic Screens. Molecular and Cellular Proteomics, 2012, 11, M111.014035.	3.8	118
70	Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation. Oncogene, 2012, 31, 390-401.	5.9	40
71	ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression. Molecular Cell, 2012, 45, 764-776.	9.7	112
72	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122

#	Article	IF	CITATIONS
73	Identification of Cytoskeleton-Associated Proteins Essential for Lysosomal Stability and Survival of Human Cancer Cells. PLoS ONE, 2012, 7, e45381.	2.5	63
74	ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Research, 2012, 22, 1181-1198.	12.0	201
75	Pterostilbene-Induced Tumor Cytotoxicity: A Lysosomal Membrane Permeabilization-Dependent Mechanism. PLoS ONE, 2012, 7, e44524.	2.5	80
76	Activation of phospholipase A2 by Hsp70 in vitro. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2569-2572.	2.6	10
77	microRNA-101 is a potent inhibitor of autophagy. EMBO Journal, 2011, 30, 4628-4641.	7.8	302
78	Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy. Journal of Biological Chemistry, 2011, 286, 38904-38912.	3.4	82
79	ErbB2â€associated changes in the lysosomal proteome. Proteomics, 2011, 11, 2830-2838.	2.2	23
80	A comprehensive siRNA screen for kinases that suppress macroautophagy in optimal growth conditions. Autophagy, 2011, 7, 892-903.	9.1	76
81	A comprehensive glossary of autophagy-related molecules and processes (2 nd edition). Autophagy, 2011, 7, 1273-1294.	9.1	255
82	Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature, 2010, 463, 549-553.	27.8	425
83	Cytosolic FoxO1: alive and killing. Nature Cell Biology, 2010, 12, 642-643.	10.3	30
84	BAMLET Activates a Lysosomal Cell Death Program in Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 24-32.	4.1	122
85	Connecting Hsp70, sphingolipid metabolism and lysosomal stability. Cell Cycle, 2010, 9, 2305-2309.	2.6	69
86	Autophagy as a basis for the health-promoting effects of vitamin D. Trends in Molecular Medicine, 2010, 16, 295-302.	6.7	93
87	Depletion of Kinesin 5B Affects Lysosomal Distribution and Stability and Induces Peri-Nuclear Accumulation of Autophagosomes in Cancer Cells. PLoS ONE, 2009, 4, e4424.	2.5	98
88	Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy, 2009, 5, 1018-1025.	9.1	84
89	Lysosomal involvement in cell death and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 746-754.	4.1	332
90	TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO Journal, 2009, 28, 1532-1532.	7.8	5

#	Article	IF	CITATIONS
91	TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO Journal, 2009, 28, 677-685.	7.8	357
92	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	11.2	599
93	Apoptosis and autophagy: Targeting autophagy signalling in cancer cells –â€~trick or treats'?. FEBS Journal, 2009, 276, 6084-6096.	4.7	111
94	Engaging the lysosomal compartment to combat B cell malignancies. Journal of Clinical Investigation, 2009, 119, 2133-6.	8.2	5
95	Peripheral blood monocytes from patients with reactive arthritis show normal production of tumour necrosis factor-alpha. Clinical and Experimental Immunology, 2008, 83, 516-517.	2.6	5
96	Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochemical and Biophysical Research Communications, 2008, 367, 799-804.	2.1	116
97	High-Affinity Small Moleculeâ^'Phospholipid Complex Formation: Binding of Siramesine to Phosphatidic Acid. Journal of the American Chemical Society, 2008, 130, 12953-12960.	13.7	38
98	Autophagy: An emerging target for cancer therapy. Autophagy, 2008, 4, 574-580.	9.1	190
99	Ordered Organelle Degradation during Starvation-induced Autophagy. Molecular and Cellular Proteomics, 2008, 7, 2419-2428.	3.8	166
100	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
101	Sensitization to the Lysosomal Cell Death Pathway by Oncogene-Induced Down-regulation of Lysosome-Associated Membrane Proteins 1 and 2. Cancer Research, 2008, 68, 6623-6633.	0.9	191
102	IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. Journal of Cell Science, 2008, 121, 854-864.	2.0	90
103	Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy, 2008, 4, 487-499.	9.1	140
104	62Cancer cell survival factor LEDGF†/p75 is a nuclear protein that mediates lysosomal stability. Apmis, 2008, 116, 441-441.	2.0	0
105	Lens Epithelium-Derived Growth Factor (LEDGF/p75) is a cancer cell survival factor that controls the expression of decoy TRAIL-receptor 2 (DcR2). Apmis, 2008, 116, 413-413.	2.0	0
106	54 Anti-Cancer Agent Siramesine Induces Selective Cathepsin Induced Cell Death. Apmis, 2008, 116, 439-439.	2.0	0
107	AMP-Activated Protein Kinase: A Universal Regulator of Autophagy?. Autophagy, 2007, 3, 381-383.	9.1	220
108	Vincristine Induces Dramatic Lysosomal Changes and Sensitizes Cancer Cells to Lysosome-Destabilizing Siramesine. Cancer Research, 2007, 67, 2217-2225.	0.9	187

#	Article	IF	CITATIONS
109	c-Jun NH2-Terminal Kinase 2 Is Required for Ras Transformation Independently of Activator Protein 1. Cancer Research, 2007, 67, 178-185.	0.9	27
110	Lens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer. Cancer Research, 2007, 67, 2559-2567.	0.9	112
111	Control of Macroautophagy by Calcium, Calmodulin-Dependent Kinase Kinase-β, and Bcl-2. Molecular Cell, 2007, 25, 193-205.	9.7	961
112	The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 2007, 581, 3702-3710.	2.8	928
113	Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death and Differentiation, 2007, 14, 1576-1582.	11.2	662
114	Apoptosome-Independent Activation of the Lysosomal Cell Death Pathway byCaspase-9. Molecular and Cellular Biology, 2006, 26, 7880-7891.	2.3	94
115	Lysosomes and autophagy in cell death control. Nature Reviews Cancer, 2005, 5, 886-897.	28.4	1,135
116	Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death and Differentiation, 2005, 12, 38-51.	11.2	106
117	Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death and Differentiation, 2005, 12, 1297-1309.	11.2	247
118	Lysosomes as Targets for Cancer Therapy. Cancer Research, 2005, 65, 2993-2995.	0.9	294
119	Hsp70-2 is Required for Tumor Cell Growth and Survival. Cell Cycle, 2005, 4, 877-880.	2.6	59
120	Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes and Development, 2005, 19, 570-582.	5.9	354
121	Effective Tumor Cell Death by σ-2 Receptor Ligand Siramesine Involves Lysosomal Leakage and Oxidative Stress. Cancer Research, 2005, 65, 8975-8983.	0.9	221
122	Heat Shock Protein 70 Promotes Cancer Cell Viability by Safeguarding Lysosomal Integrity. Cell Cycle, 2004, 3, 1484-1485.	2.6	109
123	Heat Shock Protein 70 Promotes Cell Survival by Inhibiting Lysosomal Membrane Permeabilization. Journal of Experimental Medicine, 2004, 200, 425-435.	8.5	495
124	Sensitization to the Lysosomal Cell Death Pathway upon Immortalization and Transformation. Cancer Research, 2004, 64, 5301-5310.	0.9	141
125	Lysosomes and mitochondria in the commitment to apoptosis: a potential role for cathepsin D and AIF. Cell Death and Differentiation, 2004, 11, 135-136.	11.2	69
126	JNK2 mediates TNF-induced cell death in mouse embryonic fibroblasts via regulation of both caspase and cathepsin protease pathways. Cell Death and Differentiation, 2004, 11, 301-313.	11.2	54

#	Article	IF	CITATIONS
127	Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene, 2004, 23, 2746-2756.	5.9	281
128	Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins. Pflugers Archiv European Journal of Physiology, 2004, 449, 175-185.	2.8	29
129	Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells. Archives of Dermatological Research, 2004, 296, 67-73.	1.9	7
130	Lack of neuroprotection by heat shock protein 70 overexpression in a mouse model of global cerebral ischemia. Experimental Brain Research, 2004, 154, 442-449.	1.5	35
131	Continuous interferon-? or tumor necrosis factor-? exposure of enterocytes attenuates cell death responses. Cytokine, 2004, 27, 113-119.	3.2	12
132	Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression. Brain Research, 2003, 970, 47-57.	2.2	117
133	Cell death induced by down-regulation of heat shock protein 70 in lung cancer cell lines is p53-independent and does not require DNA cleavage. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 748-754.	0.8	23
134	Caspase-independent cell death in T lymphocytes. Nature Immunology, 2003, 4, 416-423.	14.5	351
135	Diarylurea Compounds Inhibit Caspase Activation by Preventing the Formation of the Active 700-Kilodalton Apoptosome Complex. Molecular and Cellular Biology, 2003, 23, 7829-7837.	2.3	47
136	Integrating Proteomic and Functional Genomic Technologies in Discovery-driven Translational Breast Cancer Research. Molecular and Cellular Proteomics, 2003, 2, 369-377.	3.8	44
137	Lysosomal Membrane Permeabilization Induces Cell Death in a Mitochondrion-dependent Fashion. Journal of Experimental Medicine, 2003, 197, 1323-1334.	8.5	421
138	From Caspases to Alternative Cell-Death Mechanisms. , 2003, , 101-122.		0
139	Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Research, 2003, 63, 8233-40.	0.9	81
140	Cathepsin B Mediates Tumor Necrosis Factor-induced Arachidonic Acid Release in Tumor Cells. Journal of Biological Chemistry, 2002, 277, 39499-39506.	3.4	52
141	Calcium and Calpain as Key Mediators of Apoptosis-like Death Induced by Vitamin D Compounds in Breast Cancer Cells. Journal of Biological Chemistry, 2002, 277, 30738-30745.	3.4	189
142	Programmed cell death: many ways for cells to die decently. Annals of Medicine, 2002, 34, 480-488.	3.8	107
143	Triggering caspase-independent cell death to combat cancer. Trends in Molecular Medicine, 2002, 8, 212-220.	6.7	152
144	A Novel Specific Role for IκB Kinase Complex-associated Protein in Cytosolic Stress Signaling. Journal of Biological Chemistry, 2002, 277, 31918-31928.	3.4	98

#	Article	IF	CITATIONS
145	E2F activity is essential for survival of Myc-overexpressing human cancer cells. Oncogene, 2002, 21, 6498-6509.	5.9	19
146	Burning up TNF toxicity for cancer therapy. Nature Medicine, 2002, 8, 667-668.	30.7	6
147	Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Research, 2002, 62, 7139-42.	0.9	118
148	BIBX1382BS, but Not AG1478 or PD153035, Inhibits the ErbB Kinases at Different Concentrations in Intact Cells. Biochemical and Biophysical Research Communications, 2001, 281, 25-31.	2.1	39
149	In Vivo and in Vitro Evidence for Extracellular Caspase Activity Released from Apoptotic Cells. Biochemical and Biophysical Research Communications, 2001, 283, 1111-1117.	2.1	46
150	Sensitization to TNF-induced apoptosis by 1,25-dihydroxy vitamin D3 involves up-regulation of the TNF receptor 1 and cathepsin B. International Journal of Cancer, 2001, 93, 224-231.	5.1	59
151	Truncated ErbB2 receptor enhances ErbB1 signaling and induces reversible, ERK-independent loss of epithelial morphology. International Journal of Cancer, 2001, 94, 185-191.	5.1	35
152	Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 2001, 3, 839-843.	10.3	790
153	A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins. Cell Death and Differentiation, 2001, 8, 265-272.	11.2	46
154	Triggering of apoptosis by cathepsins. Cell Death and Differentiation, 2001, 8, 324-326.	11.2	186
155	Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells. Oncogene, 2001, 20, 7478-7485.	5.9	77
156	Four deaths and a funeral: from caspases to alternative mechanisms. Nature Reviews Molecular Cell Biology, 2001, 2, 589-598.	37.0	1,737
157	Cathepsin B Acts as a Dominant Execution Protease in Tumor Cell Apoptosis Induced by Tumor Necrosis Factor. Journal of Cell Biology, 2001, 153, 999-1010.	5.2	586
158	Cell death induced by TNF or serum starvation is independent of ErbB receptor signaling in MCF-7 breast carcinoma cells. , 2000, 86, 617-625.		25
159	Hsp70-RAP46 interaction in downregulation of DNA binding by glucocorticoid receptor. EMBO Journal, 2000, 19, 6508-6516.	7.8	33
160	Age-related Macular Degeneration. Journal of Biological Chemistry, 2000, 275, 39625-39630.	3.4	279
161	Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7871-7876.	7.1	372
162	Natural Resistance of Human Beta Cells toward Nitric Oxide Is Mediated by Heat Shock Protein 70. Journal of Biological Chemistry, 2000, 275, 19521-19528.	3.4	74

#	Article	IF	CITATIONS
163	Heat Shock Protein 70 Is Required for the Survival of Cancer Cells. Annals of the New York Academy of Sciences, 2000, 926, 122-125.	3.8	174
164	Acquired antiestrogen resistance in MCF-7 human breast cancer sublines is not accomplished by altered expression of receptors in the ErbB-family. Breast Cancer Research and Treatment, 1999, 58, 41-56.	2.5	45
165	Heat shock proteins as cellular lifeguards. Annals of Medicine, 1999, 31, 261-271.	3.8	469
166	Escaping Cell Death: Survival Proteins in Cancer. Experimental Cell Research, 1999, 248, 30-43.	2.6	601
167	Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO Journal, 1998, 17, 6124-6134.	7.8	607
168	TNF-Induced Mitochondrial Changes and Activation of Apoptotic Proteases are Inhibited by A20. Free Radical Biology and Medicine, 1998, 25, 57-65.	2.9	36
169	Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5073-5077.	7.1	204
170	Induction of TNF-sensitive cellular phenotype by c-Myc involves p53 and impaired NF-kappa B activation. EMBO Journal, 1997, 16, 7382-7392.	7.8	102
171	The ability of BHRF1 to inhibit apoptosis is dependent on stimulus and cell type. Journal of Virology, 1997, 71, 7509-7517.	3.4	76
172	Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Letters, 1996, 391, 185-188.	2.8	147
173	HSP70 Overexpression Mediates the Escape of a Doxorubicin-Induced G2 Cell Cycle Arrest. Biochemical and Biophysical Research Communications, 1996, 220, 153-159.	2.1	70
174	HSP27 and HSP70 increase the survival of WEHI-S cells exposed to hyperthermia. International Journal of Hyperthermia, 1996, 12, 125-138.	2.5	35
175	Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. International Journal of Cancer, 1995, 60, 689-693.	5.1	176
176	Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release Journal of Clinical Investigation, 1995, 95, 926-933.	8.2	222
177	A sub-set of immediate early mRNAs induced by tumor necrosis factor-α during cellular cytotoxic and non-cytotoxic responses. International Journal of Cancer, 1993, 55, 655-659.	5.1	4
178	Tumor necrosis factor-α and interferon-γ inhibit insulin-like growth factor II gene expression in human fetal adrenal cell cultures. Molecular and Cellular Endocrinology, 1993, 91, 59-65.	3.2	27
179	Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection Journal of Experimental Medicine, 1993, 177, 231-236.	8.5	206
180	Emerging Role of Heat Shock Proteins in Biology and Medicine. Annals of Medicine, 1992, 24, 249-258.	3.8	98

#	Article	IF	CITATIONS
181	Tumor Necrosis Factor as a Potent Inhibitor of Adrenocorticotropin-Induced Cortisol Production and Steroidogenic P450 Enzyme Gene Expression in Cultured Human Fetal Adrenal Cells*. Endocrinology, 1991, 128, 623-629.	2.8	246
182	Effects of Heat Shock on Cytolysis Mediated by NK Cells, LAK Cells, Activated Monocytes and TNFs alpha and beta. Scandinavian Journal of Immunology, 1990, 31, 175-182.	2.7	23
183	Phagocyte Function in Familial Hypercholesterolaemia: Peripheral Blood Monocytes Exposed to Lipopolysaccharide Show Increased Tumour Necrosis Factor Production. Scandinavian Journal of Immunology, 1990, 32, 679-685.	2.7	18
184	Regulation of ACTH-induced steroidogenesis in human fetal adrenals by rTNF-α. Molecular and Cellular Endocrinology, 1990, 68, R31-R36.	3.2	53
185	Phagocyte function in juvenile periodontitis. Infection and Immunity, 1990, 58, 1085-1092.	2.2	24
186	Heat shock protects WEHI-164 target cells from the cytolysis by tumor necrosis factors α and β. European Journal of Immunology, 1989, 19, 1413-1417.	2.9	84