Changle Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4548777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doped graphene for metal-free catalysis. Chemical Society Reviews, 2014, 43, 2841-2857.	18.7	710
2	Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nature Reviews Chemistry, 2018, 2, 6-14.	13.8	460
3	Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization. ACS Catalysis, 2016, 6, 428-441.	5.5	418
4	Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy and Environmental Science, 2013, 6, 3260.	15.6	390
5	Highly Robust Palladium(II) αâ€Điimine Catalysts for Slowâ€Chainâ€Walking Polymerization of Ethylene and Copolymerization with Methyl Acrylate. Angewandte Chemie - International Edition, 2015, 54, 9948-9953.	7.2	309
6	Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers. Angewandte Chemie - International Edition, 2019, 58, 7192-7200.	7.2	289
7	Direct Synthesis of Functionalized Highâ€Molecularâ€Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers. Angewandte Chemie - International Edition, 2016, 55, 13281-13285.	7.2	263
8	A continuing legend: the Brookhart-type α-diimine nickel and palladium catalysts. Polymer Chemistry, 2019, 10, 2354-2369.	1.9	245
9	Systematic Investigations of Ligand Steric Effects on α-Diimine Palladium Catalyzed Olefin Polymerization and Copolymerization. Macromolecules, 2016, 49, 8855-8862.	2.2	223
10	Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Materials Chemistry Frontiers, 2017, 1, 2487-2494.	3.2	183
11	A Versatile Ligand Platform for Palladium―and Nickelâ€Catalyzed Ethylene Copolymerization with Polar Monomers. Angewandte Chemie - International Edition, 2018, 57, 3094-3098.	7.2	175
12	Rational Design of High-Performance Phosphine Sulfonate Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catalysis, 2017, 7, 1308-1312.	5.5	162
13	A Second oordination‧phere Strategy to Modulate Nickel―and Palladium atalyzed Olefin Polymerization and Copolymerization. Angewandte Chemie - International Edition, 2017, 56, 11604-11609.	7.2	159
14	Redox-Controlled Polymerization and Copolymerization. ACS Catalysis, 2018, 8, 5506-5514.	5.5	150
15	Cationic Polymerization and Insertion Chemistry in the Reactions of Vinyl Ethers with (α-Diimine)PdMe ⁺ Species. Journal of the American Chemical Society, 2010, 132, 5273-5284.	6.6	138
16	A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins. Nature Communications, 2020, 11, 372.	5.8	138
17	Direct Synthesis of Thermoplastic Polyolefin Elastomers from Nickel-Catalyzed Ethylene Polymerization. Macromolecules, 2017, 50, 6074-6080.	2.2	137
18	Magnetically responsive photonic watermarks on banknotes. Journal of Materials Chemistry C, 2014, 2, 3695.	2.7	134

#	Article	lF	CITATIONS
19	Direct Synthesis of Polar-Functionalized Linear Low-Density Polyethylene (LLDPE) and Low-Density Polyethylene (LDPE). Macromolecules, 2018, 51, 4040-4048.	2.2	132
20	(α-Diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers. Science China Chemistry, 2015, 58, 1663-1673.	4.2	131
21	Redoxâ€Controlled Olefin (Co)Polymerization Catalyzed by Ferroceneâ€Bridged Phosphineâ€Sulfonate Palladium Complexes. Angewandte Chemie - International Edition, 2015, 54, 15520-15524.	7.2	128
22	Influence of Polyethylene Glycol Unit on Palladium―and Nickel atalyzed Ethylene Polymerization and Copolymerization. Angewandte Chemie - International Edition, 2017, 56, 14672-14676.	7.2	128
23	Suppression of β-Hydride Chain Transfer in Nickel(II)-Catalyzed Ethylene Polymerization via Weak Fluorocarbon Ligand–Product Interactions. Organometallics, 2012, 31, 3773-3789.	1.1	124
24	Ethylene Polymerization and Copolymerization with Polar Monomers by Cationic Phosphine Phosphonic Amide Palladium Complexes. ACS Catalysis, 2015, 5, 5932-5937.	5.5	124
25	Polarâ€Functionalized, Crosslinkable, Selfâ€Healing, and Photoresponsive Polyolefins. Angewandte Chemie - International Edition, 2020, 59, 395-402.	7.2	124
26	Investigations of the Ligand Electronic Effects on α-Diimine Nickel(II) Catalyzed Ethylene Polymerization. Polymers, 2016, 8, 37.	2.0	116
27	Concerted steric and electronic effects on $\hat{l}\pm$ -diimine nickel- and palladium-catalyzed ethylene polymerization and copolymerization. Science Bulletin, 2020, 65, 300-307.	4.3	115
28	Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chemical Physics Letters, 2017, 684, 148-152.	1.2	112
29	Ligand Steric and Fluoroalkyl Substituent Effects on Enchainment Cooperativity and Stability in Bimetallic Nickel(II) Polymerization Catalysts. Chemistry - A European Journal, 2012, 18, 10715-10732.	1.7	110
30	Conversion of Chicken Feather Waste to N-Doped Carbon Nanotubes for the Catalytic Reduction of 4-Nitrophenol. Environmental Science & Technology, 2014, 48, 10191-10197.	4.6	109
31	Palladium-Catalyzed Direct Synthesis of Various Branched, Carboxylic Acid-Functionalized Polyolefins: Characterization, Derivatization, and Properties. Macromolecules, 2018, 51, 6818-6824.	2.2	104
32	Accessing Multiple Catalytically Active States in Redox-Controlled Olefin Polymerization. ACS Catalysis, 2017, 7, 7490-7494.	5.5	102
33	Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polymer Chemistry, 2018, 9, 4143-4149.	1.9	101
34	Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. Scientific Reports, 2013, 3, 1484.	1.6	100
35	Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co)polymerization. Materials Chemistry Frontiers, 2017, 1, 967-972.	3.2	100
36	Ethylene Polymerization and Copolymerization Using Nickel 2-Iminopyridine- <i>N</i> -oxide Catalysts: Modulation of Polymer Molecular Weights and Molecular-Weight Distributions. Macromolecules, 2018, 51, 49-56.	2.2	100

#	Article	IF	CITATIONS
37	Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chemical Communications, 2016, 52, 9113-9116.	2.2	94
38	Syntheses of Well-Defined Functional Isotactic Polypropylenes via Efficient Copolymerization of Propylene with ω-Halo-α-alkenes by Post-metallocene Hafnium Catalyst. Macromolecules, 2014, 47, 552-559.	2.2	93
39	Ni(II) Phenoxyiminato Olefin Polymerization Catalysis: Striking Coordinative Modulation of Hyperbranched Polymer Microstructure and Stability by a Proximate Sulfonyl Group. ACS Catalysis, 2014, 4, 999-1003.	5.5	91
40	Rational Design of α-Fe ₂ O ₃ /Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants. ACS Applied Materials & Interfaces, 2016, 8, 6431-6438.	4.0	91
41	Influence of Backbone Substituents on the Ethylene (Co)polymerization Properties of α-diimine Pd(II) and Ni(II) Catalysts. Organometallics, 2016, 35, 1794-1801.	1.1	90
42	Multiple Insertion of a Silyl Vinyl Ether by (α-Diimine)PdMe+ Species. Journal of the American Chemical Society, 2008, 130, 12892-12893.	6.6	89
43	Norbornene homopolymerization and copolymerization with ethylene by phosphine-sulfonate nickel catalysts. Polymer Chemistry, 2015, 6, 2669-2676.	1.9	88
44	Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Scientific Reports, 2015, 5, 9298.	1.6	88
45	Direct Synthesis of Polar Functionalized Polyethylene Thermoplastic Elastomer. Macromolecules, 2020, 53, 2539-2546.	2.2	87
46	Modulating polyolefin properties through the incorporation of nitrogen-containing polar monomers. Polymer Chemistry, 2017, 8, 2405-2409.	1.9	85
47	Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers. Angewandte Chemie, 2019, 131, 7268-7276.	1.6	81
48	Catecholâ€Functionalized Polyolefins. Angewandte Chemie - International Edition, 2020, 59, 7953-7959.	7.2	81
49	Palladium-Catalyzed Dimerization of Vinyl Ethers to Acetals. Journal of the American Chemical Society, 2010, 132, 10254-10255.	6.6	77
50	Low temperature synthesis and photocatalytic property of perovskite-type LaCoO3 hollow spheres. Journal of Alloys and Compounds, 2013, 576, 5-12.	2.8	75
51	Ethylene polymerization by salicylaldimine nickel(<scp>ii</scp>) complexes containing a dibenzhydryl moiety. Dalton Transactions, 2016, 45, 1496-1503.	1.6	74
52	Phosphine-sulfonate-based nickel catalysts: ethylene polymerization and copolymerization with polar-functionalized norbornenes. Polymer Chemistry, 2017, 8, 7400-7405.	1.9	74
53	Direct and Tandem Routes for the Copolymerization of Ethylene with Polar Functionalized Internal Olefins. Angewandte Chemie - International Edition, 2020, 59, 1206-1210.	7.2	74
54	Ethylene Polymerization by Xantheneâ€Bridged Dinuclear αâ€Diimine Ni ^{II} Complexes. ChemCatChem, 2016, 8, 434-440.	1.8	73

#	Article	IF	CITATIONS
55	Material Properties of Functional Polyethylenes from Transition-Metal-Catalyzed Ethylene–Polar Monomer Copolymerization. Macromolecules, 2022, 55, 1910-1922.	2.2	71
56	Synthesis of silicon-functionalized polyolefins by subsequent cobalt-catalyzed dehydrogenative silylation and nickel-catalyzed copolymerization. Science Bulletin, 2018, 63, 441-445.	4.3	68
57	Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. Journal of Catalysis, 2019, 369, 233-238.	3.1	68
58	A general strategy for heterogenizing olefin polymerization catalysts and the synthesis of polyolefins and composites. Nature Communications, 2022, 13, 1954.	5.8	68
59	Ethylene Polymerization and Copolymerization by Palladium and Nickel Catalysts Containing Naphthalene-Bridged Phosphine–Sulfonate Ligands. Organometallics, 2016, 35, 1472-1479.	1.1	66
60	An Ionic Cluster Strategy for Performance Improvements and Product Morphology Control in Metal-Catalyzed Olefin–Polar Monomer Copolymerization. Journal of the American Chemical Society, 2022, 144, 2245-2254.	6.6	65
61	Hydrogenâ€Bondingâ€Induced Heterogenization of Nickel and Palladium Catalysts for Copolymerization of Ethylene with Polar Monomers. Angewandte Chemie - International Edition, 2021, 60, 17446-17451.	7.2	64
62	Core–shell CeO2@C nanospheres as enhanced anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6790.	5.2	59
63	Manipulation of polymer branching density in phosphine-sulfonate palladium and nickel catalyzed ethylene polymerization. Polymer Chemistry, 2017, 8, 6272-6276.	1.9	59
64	Synthesis of carbon–Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. Carbon, 2007, 45, 727-731.	5.4	57
65	Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization. Angewandte Chemie - International Edition, 2021, 60, 22195-22200.	7.2	57
66	Ligand–metal secondary interactions in phosphine–sulfonate palladium and nickel catalyzed ethylene (co)polymerization. Polymer Chemistry, 2020, 11, 411-416.	1.9	56
67	A disubstituted-norbornene-based comonomer strategy to address polar monomer problem. Science Bulletin, 2021, 66, 1429-1436.	4.3	56
68	A Selfâ€Supporting Strategy for Gasâ€Phase and Slurryâ€Phase Ethylene Polymerization using Lateâ€Transitionâ€Metal Catalysts. Angewandte Chemie - International Edition, 2020, 59, 14884-14890.	7.2	55
69	Enhanced CO oxidation on CeO ₂ /Co ₃ O ₄ nanojunctions derived from annealing of metal organic frameworks. Nanoscale, 2016, 8, 19761-19768.	2.8	54
70	Synthesis and application of binuclear α-diimine nickel/palladium catalysts with a conjugated backbone. Dalton Transactions, 2014, 43, 2900-2906.	1.6	53
71	Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. Materials Letters, 2005, 59, 3738-3741.	1.3	52
72	Influence of ligand second coordination sphere effects on the olefin (co)polymerization properties of α-diimine Pd(<scp>ii</scp>) catalysts. Polymer Chemistry, 2016, 7, 3933-3938.	1.9	52

#	Article	IF	CITATIONS
73	Dinuclear αâ€Ðiimine Ni ^{II} and Pd ^{II} Complexes that Catalyze Ethylene Polymerization and Copolymerization. ChemCatChem, 2017, 9, 1062-1066.	1.8	50
74	Position Makes the Difference: Electronic Effects in Nickel-Catalyzed Ethylene Polymerizations and Copolymerizations. Inorganic Chemistry, 2018, 57, 14913-14919.	1.9	50
75	A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization. Chinese Journal of Polymer Science (English Edition), 2019, 37, 974-980.	2.0	50
76	Direct Synthesis of Functionalized Highâ€Molecularâ€Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers. Angewandte Chemie, 2016, 128, 13475-13479.	1.6	48
77	Magnetically controllable colloidal photonic crystals: unique features and intriguing applications. Journal of Materials Chemistry C, 2013, 1, 6013.	2.7	47
78	Low-Cost, Acid/Alkaline-Resistant, and Fluorine-Free Superhydrophobic Fabric Coating from Onionlike Carbon Microspheres Converted from Waste Polyethylene Terephthalate. Environmental Science & Technology, 2014, 48, 2928-2933.	4.6	46
79	Lubrication Properties of Polyalphaolefin and Polysiloxane Lubricants: Molecular Structure–Tribology Relationships. Tribology Letters, 2012, 48, 355.	1.2	44
80	Side-Arm Control in Phosphine-Sulfonate Palladium- and Nickel-Catalyzed Ethylene Polymerization and Copolymerization. Organometallics, 2017, 36, 2338-2344.	1.1	44
81	Synthesis of Nonalternating Polyketones Using Cationic Diphosphazane Monoxide-Palladium Complexes. Journal of the American Chemical Society, 2021, 143, 10743-10750.	6.6	44
82	Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese Journal of Polymer Science (English Edition), 2018, 36, 157-162.	2.0	43
83	Cationic Palladium(II) Complexes of Phosphine–Sulfonamide Ligands: Synthesis, Characterization, and Catalytic Ethylene Oligomerization. Organometallics, 2014, 33, 3738-3745.	1.1	42
84	Influences of Alkyl and Aryl Substituents on Iminopyridine Fe(II)- and Co(II)-Catalyzed Isoprene Polymerization. Polymers, 2016, 8, 389.	2.0	42
85	Degradable PE-Based Copolymer with Controlled Ester Structure Incorporation by Cobalt-Mediated Radical Copolymerization under Mild Condition. IScience, 2020, 23, 100904.	1.9	42
86	Palladium-Catalyzed Synthesis of Norbornene-Based Polar-Functionalized Polyolefin Elastomers. Macromolecules, 2021, 54, 3197-3203.	2.2	41
87	Interplay of Supramolecular Chemistry and Photochemistry with Palladium-Catalyzed Ethylene Polymerization. CCS Chemistry, 2021, 3, 2025-2034.	4.6	41
88	Light-Controlled Switchable Ring Opening Polymerization. Macromolecules, 2019, 52, 5646-5651.	2.2	40
89	Nickel catalysts for the synthesis of ultra-high molecular weight polyethylene. Science Bulletin, 2020, 65, 1137-1138.	4.3	40
90	Facile synthesis of graphene-like Co3S4 nanosheet/Ag2S nanocomposite with enhanced performance in visible-light photocatalysis. Applied Surface Science, 2015, 351, 374-381.	3.1	39

#	Article	IF	CITATIONS
91	Redox control in palladium catalyzed norbornene and alkyne polymerization. Inorganic Chemistry Frontiers, 2017, 4, 795-800.	3.0	36
92	Fabrication of Y-junction carbon nanotubes by reduction of carbon dioxide with sodium borohydride. Diamond and Related Materials, 2006, 15, 1540-1543.	1.8	35
93	Direct Synthesis of Branched Carboxylic Acid Functionalized Poly(1-octene) by α-Diimine Palladium Catalysts. Polymers, 2017, 9, 122.	2.0	35
94	Systematic Studies on (Co)Polymerization of Polar Styrene Monomers with Palladium Catalysts. Macromolecules, 2019, 52, 7197-7206.	2.2	35
95	Fast and Controlled Ring-Opening Polymerization of Cyclic Esters by Alkoxides and Cyclic Amides. Macromolecules, 2018, 51, 2048-2053.	2.2	34
96	Improving the flame retardancy of polyethylenes through the palladium-catalyzed incorporation of polar comonomers. Polymer Chemistry, 2019, 10, 1416-1422.	1.9	33
97	Controlled Synthesis of Carbon Nanoparticles in a Supercritical Carbon Disulfide System. Materials, 2014, 7, 97-105.	1.3	32
98	Reducing Reaction of Fe3O4in Nanoscopic Reactors of a-CNTs. Journal of Physical Chemistry B, 2007, 111, 1724-1728.	1.2	31
99	WO ₃ and Ag nanoparticle co-sensitized TiO ₂ nanowires: preparation and the enhancement of photocatalytic activity. RSC Advances, 2014, 4, 23831-23837.	1.7	30
100	Promoting Ethylene (co)Polymerization in Aliphatic Hydrocarbon Solvents Using <scp><i>tert</i>â€Butyl</scp> Substituted Nickel Catalysts. Chinese Journal of Chemistry, 2022, 40, 215-222.	2.6	30
101	Large-scale synthesis of carbon spheres by reduction of supercritical CO2 with metallic calcium. Chemical Physics Letters, 2006, 421, 584-588.	1.2	29
102	Visible-Light Active and Magnetically Recyclable Nanocomposites for the Degradation of Organic Dye. Materials, 2014, 7, 4034-4044.	1.3	29
103	One for Two: Conversion of Waste Chicken Feathers to Carbon Microspheres and (NH ₄)HCO ₃ . Environmental Science & Technology, 2014, 48, 6500-6507.	4.6	29
104	Influence of chelate ring size on the properties of phosphine-sulfonate palladium catalysts. Science China Chemistry, 2018, 61, 1175-1178.	4.2	29
105	Ethylene (co)Oligomerization by Phosphineâ€Pyridine Based Palladium and Nickel Catalysts. ChemCatChem, 2018, 10, 5135-5140.	1.8	29
106	Palladium-Catalyzed Dimerization of Vinyl Ethers: Mechanism, Catalyst Optimization, and Polymerization Applications. Macromolecules, 2019, 52, 7123-7129.	2.2	28
107	Synthesis, Structures, and Ethylene Polymerization Behavior of Bis(pyrazolyl)borate Zirconium and Hafnium Benzyl Complexes. Organometallics, 2010, 29, 5373-5381.	1.1	27
108	A Secondâ€Coordinationâ€Sphere Strategy to Modulate Nickel―and Palladiumâ€Catalyzed Olefin Polymerization and Copolymerization. Angewandte Chemie, 2017, 129, 11762-11767.	1.6	27

#	Article	IF	CITATIONS
109	Facile Approach to Prepare Pd Nanoarray Catalysts within Porous Alumina Templates on Macroscopic Scales. ACS Applied Materials & Interfaces, 2013, 5, 12695-12700.	4.0	26
110	Formation of variously shaped carbon nanotubes in carbon dioxide–alkali metal (Li, Na) system. Carbon, 2005, 43, 1104-1108.	5.4	25
111	Facile Synthesis of βâ€Diketone Alcohols for Combined Functionality: Initiation, Catalysis, and Luminescence. Macromolecular Rapid Communications, 2014, 35, 566-573.	2.0	25
112	A Versatile Ligand Platform for Palladium―and Nickelâ€Catalyzed Ethylene Copolymerization with Polar Monomers. Angewandte Chemie, 2018, 130, 3148-3152.	1.6	25
113	Diphosphazane-monoxide and Phosphine-sulfonate Palladium Catalyzed Ethylene Copolymerization with Polar Monomers: A Computational Study. Organometallics, 2019, 38, 638-646.	1.1	25
114	Controlling the Ringâ€Opening Polymerization Process Using External Stimuli. Chinese Journal of Chemistry, 2020, 38, 282-286.	2.6	25
115	Positional Electronic Effects in <scp>Iminopyridineâ€∢i>N</scp> â€oxide Nickel Catalyzed Ethylene Polymerization ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1683-1689.	2.6	25
116	Lewis Pair Catalyzed Regioselective Polymerization of (<i>E</i> , <i>E</i>)â€Alkyl Sorbates for the Synthesis of (AB) _{<i>n</i>} Sequenced Polymers. Angewandte Chemie - International Edition, 2021, 60, 24306-24311.	7.2	25
117	Formation of C60 by reduction of CO2. Journal of Supercritical Fluids, 2009, 50, 42-45.	1.6	23
118	Preparation of Biodiesel from Soybean Catalyzed by Basic Ionic Liquids [Hnmm]OH. Materials, 2014, 7, 8012-8023.	1.3	23
119	Influence of Ligand Backbone Structure and Connectivity on the Properties of Phosphine-Sulfonate Pd(II)/Ni(II) Catalysts. Polymers, 2017, 9, 168.	2.0	23
120	Growth of Conical Carbon Nanotubes by Chemical Reduction of MgCO3. Journal of Physical Chemistry B, 2005, 109, 10557-10560.	1.2	22
121	Styrene-containing Phosphine-sulfonate Ligands for Nickel- and Palladium-catalyzed Ethylene Polymerization. Chinese Journal of Polymer Science (English Edition), 2021, 39, 447-454.	2.0	22
122	Large-Scale Synthesis of Monodisperse Magnesium Ferrite via an Environmentally Friendly Molten Salt Route. Inorganic Chemistry, 2014, 53, 2053-2057.	1.9	21
123	Redox Control in Olefin Polymerization and Copolymerization. Synlett, 2016, 27, 1297-1302.	1.0	21
124	Polarâ€Functionalized, Crosslinkable, Selfâ€Healing, and Photoresponsive Polyolefins. Angewandte Chemie, 2020, 132, 403-410.	1.6	21
125	Amidine/Phosphineâ€Oxideâ€Based Nickel Catalysts for Ethylene Polymerization and Copolymerization. ChemCatChem, 2019, 11, 5339-5344.	1.8	19
126	Hydrogenâ€Bondingâ€Induced Heterogenization of Nickel and Palladium Catalysts for Copolymerization of Ethylene with Polar Monomers. Angewandte Chemie, 2021, 133, 17586-17591.	1.6	19

#	Article	IF	CITATIONS
127	Ring-opening polymerization of rac-lactide using anilinotropone-based aluminum complexes-sidearm effect on the catalysis. Polymer, 2015, 64, 234-239.	1.8	18
128	Influence of Polyethylene Glycol Unit on Palladium―and Nickel atalyzed Ethylene Polymerization and Copolymerization. Angewandte Chemie, 2017, 129, 14864-14868.	1.6	18
129	Highly Stable Hierarchical Flower-like β-In2S3 Assembled from 2D Nanosheets with high Adsorption-Photodecolorization Activities for the Treatment of Wastewater. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	16
130	A general cocatalyst strategy for performance enhancement in nickel catalyzed ethylene (co)polymerization. Chinese Chemical Letters, 2022, 33, 4363-4366.	4.8	16
131	Friction and Wear Protection Performance of Synthetic Siloxane Lubricants. Tribology Letters, 2013, 51, 365-376.	1.2	15
132	Polymerization of disubstituted acetylenes by monodentate NHC-Pd catalysts. Polymer Chemistry, 2015, 6, 7127-7132.	1.9	15
133	Direct and Tandem Routes for the Copolymerization of Ethylene with Polar Functionalized Internal Olefins. Angewandte Chemie, 2020, 132, 1222-1226.	1.6	15
134	Energy Efficient Siloxane Lubricants Utilizing Temporary Shear-Thinning. Tribology Letters, 2013, 49, 525-538.	1.2	14
135	Facile Synthesis of CeO2-LaFeO3 Perovskite Composite and Its Application for 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK) Degradation. Materials, 2016, 9, 326.	1.3	14
136	Molecularlyâ€Engineered Lubricants: Synthesis, Activation, and Tribological Characterization of Silver Complexes as Lubricant Additives. Advanced Engineering Materials, 2012, 14, 101-105.	1.6	13
137	Lewis acid/base modulation in β-diiminate zinc-catalyzed switchable ring-opening polymerization of rac-lactide. Science China Chemistry, 2019, 62, 475-478.	4.2	13
138	Catecholâ€Functionalized Polyolefins. Angewandte Chemie, 2020, 132, 8027-8033.	1.6	11
139	A Cocatalyst Strategy to Enhance Rutheniumâ€Mediated Metathesis Reactivity towards Electronâ€Đeficient Substrates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
140	Cationic P,O oordinated Nickel(II) Catalysts for Carbonylative Polymerization of Ethylene: Unexpected Productivity via Subtle Electronic Variation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
141	A continuous flow-through strategy to produce highly isotactic poly(isobutyl vinyl) Tj ETQq1 1 0.784314 rgBT /	Overlgck 1	0 Tf 50 182
142	Synthesis and ethylene polymerization behavior of {MeB(3-Ph-pyrazolyl)3}TiCl3. Journal of Organometallic Chemistry, 2010, 695, 2543-2547.	0.8	9
143	A Novel Way for Preparing Cu Nanowires. Chemistry Letters, 2005, 34, 430-431.	0.7	8
144	RECENT DEVELOPMENT IN DIAMOND SYNTHESIS. International Journal of Modern Physics B, 2008, 22, 309-326.	1.0	8

#	Article	IF	CITATIONS
145	Highly selective adsorption of organic dyes containing sulphonic groups using Cu2(OH)3NO3 nanosheets. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	8
146	Two 8-Hydroxyquinolinate Based Supramolecular Coordination Compounds: Synthesis, Structures and Spectral Properties. Materials, 2017, 10, 313.	1.3	7
147	A Selfâ€Supporting Strategy for Gasâ€Phase and Slurryâ€Phase Ethylene Polymerization using Lateâ€Transitionâ€Metal Catalysts. Angewandte Chemie, 2020, 132, 14994-15000.	1.6	7
148	Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization. Angewandte Chemie, 2021, 133, 22369-22374.	1.6	6
149	Lewisâ€Pairâ€Catalyzed Regioselective Polymerization of (E,E)â€Alkyl Sorbates for the Synthesis of (AB)n Sequenced Polymers. Angewandte Chemie, 0, , .	1.6	6
150	Lewis Acid Catalyzed Synthesis of Poly(pyrazolyl)borate Ligands. Organometallics, 2010, 29, 3679-3682.	1.1	5
151	Sidearm effect on the (Pyrrolylaldiminato)aluminum initiated ring opening polymerization of ε-caprolactone. Journal of Organometallic Chemistry, 2017, 836-837, 56-61.	0.8	5
152	Ni catalyzed ethylene copolymerization with polar monomers. Science China Chemistry, 2019, 62, 653-654.	4.2	5
153	Tandem Catalysts Combining Polymer Synthesis, Postpolymerization Modification, and Vitrimer Formation. Macromolecules, 2021, 54, 6153-6160.	2.2	5
154	Synthesis and Tribological Studies of Branched Alcohol Derived Epoxidized Biodiesel. Materials, 2015, 8, 6623-6632.	1.3	4
155	Facile synthesis of uniform hierarchical composites CuO-CeO2 for enhanced dye removal. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	3
156	Reversible-deactivation radical polymerization of vinyl acetate mediated by tralen, an organomediator. Polymer Chemistry, 2021, 12, 5159-5167.	1.9	3
157	é•å,¬åŒ–å‰,甓于功èf½åŒ–èšçf⁻çfƒæœ–™çš"å^¶å¤. Chinese Science Bulletin, 2021, , .	0.4	3
158	Cationic P,O oordinated Nickel(II) Catalysts for Carbonylative Polymerization of Ethylene: Unexpected Productivity via Subtle Electronic Variation. Angewandte Chemie, 2022, 134, .	1.6	3
159	Mechanistic Studies on Nickel-Catalyzed Ethylene Polymerization: Ligand Effects and Quantitative Structure–Activity Relationship Model. Organometallics, 2022, 41, 3212-3218.	1.1	3
160	Aluminum Tralen Complex Meditated Reversible-Deactivation Radical Polymerization of Vinyl Acetate. ACS Macro Letters, 2020, 9, 1423-1428.	2.3	2
161	Transition Metal-Catalyzed Copolymerization of Olefins With Polar Functional Monomers. , 2021, , .		0
162	A Cocatalyst Strategy to Enhance Rutheniumâ€Mediated Metathesis Reactivity towards Electronâ€Deficient Substrates. Angewandte Chemie, 0, , .	1.6	0