Malcolm L Snead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4548395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptide-Enabled Nanocomposites Offer Biomimetic Reconstruction of Silver Diamine Fluoride-Treated Dental Tissues. Polymers, 2022, 14, 1368.	2.0	6
2	Minimal Amelogenin Domain for Enamel Formation. Jom, 2021, 73, 1696-1704.	0.9	1
3	Mitigation of Peri-implantitis by Rational Design of Bifunctional Peptides with Antimicrobial Properties. ACS Biomaterials Science and Engineering, 2020, 6, 2682-2695.	2.6	37
4	An Msx2-Sp6-Follistatin Pathway Operates During Late Stages of Tooth Development to Control Amelogenesis. Frontiers in Physiology, 2020, 11, 582610.	1.3	10
5	Repeatedly Applied Peptide Film Kills Bacteria on Dental Implants. Jom, 2019, 71, 1271-1280.	0.9	24
6	Mechanics of amelogenin TRAP protein in the proximity of hydroxyapatite mineral is altered by interfacial water. Chemical Physics, 2019, 522, 104-111.	0.9	2
7	Transcriptomic analysis of MicroRNA expression in enamel-producing cells. Gene, 2019, 688, 193-203.	1.0	3
8	MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways–Novel Insight into the Origins of Enamel Pathologies. Scientific Reports, 2017, 7, 44118.	1.6	9
9	Optimizing concentration of titanium tetrafluoride solution for human dentine remineralization. Archives of Oral Biology, 2017, 83, 7-12.	0.8	9
10	Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility. Nano Letters, 2016, 16, 3042-3050.	4.5	32
11	Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design. Journal of Molecular and Engineering Materials, 2016, 04, 1640005.	0.9	26
12	LS8 cell apoptosis induced by NaF through p-ERK and p-JNK – a mechanism study of dental fluorosis. Acta Odontologica Scandinavica, 2016, 74, 539-549.	0.9	14
13	Biosilver nanoparticle interface offers improved cell viability. Surface Innovations, 2016, 4, 121-132.	1.4	16
14	Recombinant Amelogenin Protein Induces Apical Closure and Pulp Regeneration in Open-apex, Nonvital Permanent Canine Teeth. Journal of Endodontics, 2016, 42, 402-412.	1.4	11
15	Functional Study of Ectodysplasin-A Mutations Causing Non-Syndromic Tooth Agenesis. PLoS ONE, 2016, 11, e0154884.	1.1	17
16	Hypoxia increases the expression of enamel genes and cytokines in an ameloblastâ€derived cell line. European Journal of Oral Sciences, 2015, 123, 335-340.	0.7	11
17	Bioactive nanofibers enable the identification of thrombospondin 2 as a key player in enamel regeneration. Biomaterials, 2015, 61, 216-228.	5.7	12
18	Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Antiâ€Inflammatory Drug. Advanced Functional Materials, 2015, 25, 2296-2307.	7.8	66

#	Article	IF	CITATIONS
19	Bio-inspired hard-to-soft interface for implant integration to bone. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 431-434.	1.7	25
20	Biomineralization of a Self-assembled, Soft-Matrix Precursor: Enamel. Jom, 2015, 67, 788-795.	0.9	11
21	Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties. Jom, 2015, 67, 754-766.	0.9	62
22	Biofunctionalized Ceramic with Self-Assembled Networks of Nanochannels. ACS Nano, 2015, 9, 4447-4457.	7.3	15
23	Proline-Rich Peptide Mimics Effects of Enamel Matrix Derivative on Rat Oral Mucosa Incisional Wound Healing. Journal of Periodontology, 2015, 86, 1386-1395.	1.7	17
24	Protein Interaction between Ameloblastin and Proteasome Subunit α Type 3 Can Facilitate Redistribution of Ameloblastin Domains within Forming Enamel. Journal of Biological Chemistry, 2015, 290, 20661-20673.	1.6	6
25	High-fluoride promoted phagocytosis-induced apoptosis in a matured ameloblast-like cell line. Archives of Oral Biology, 2015, 60, 84-90.	0.8	10
26	Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Frontiers in Physiology, 2014, 5, 277.	1.3	36
27	A model for the molecular underpinnings of tooth defects in Axenfeld–Rieger syndrome. Human Molecular Genetics, 2014, 23, 194-208.	1.4	26
28	Application of stem cells derived from the periodontal ligament orÂgingival tissue sources for tendon tissue regeneration. Biomaterials, 2014, 35, 2642-2650.	5.7	111
29	Concise Review: Mesenchymal Stromal Cells Used for Periodontal Regeneration: A Systematic Review. Stem Cells Translational Medicine, 2014, 3, 768-774.	1.6	46
30	Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomaterialia, 2013, 9, 9343-9350.	4.1	96
31	Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials, 2013, 34, 6572-6579.	5.7	121
32	The Circadian Clock Modulates Enamel Development. Journal of Biological Rhythms, 2012, 27, 237-245.	1.4	91
33	Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides. International Journal of Oral Science, 2012, 4, 69-77.	3.6	52
34	The Role of Nanoscale Architecture in Supramolecular Templating of Biomimetic Hydroxyapatite Mineralization. Small, 2012, 8, 2195-2202.	5.2	68
35	Biomimetic Mineralization: The Role of Nanoscale Architecture in Supramolecular Templating of Biomimetic Hydroxyapatite Mineralization (Small 14/2012). Small, 2012, 8, 2194-2194.	5.2	1
36	Identification of novel candidate genes involved in mineralization of dental enamel by genomeâ€wide transcript profiling. Journal of Cellular Physiology, 2012, 227, 2264-2275.	2.0	94

#	Article	IF	CITATIONS
37	Targeted Overexpression of Amelotin Disrupts the Microstructure of Dental Enamel. PLoS ONE, 2012, 7, e35200.	1.1	59
38	Ameloblastin expression and putative autoregulation in mesenchymal cells suggest a role in early bone formation and repair. Bone, 2011, 48, 406-413.	1.4	41
39	Epithelialâ€specific knockout of the <i>Rac1</i> gene leads to enamel defects. European Journal of Oral Sciences, 2011, 119, 168-176.	0.7	16
40	Ameloblastin upstream region contains structural elements regulating transcriptional activity in a stromal cell line derived from bone marrow. European Journal of Oral Sciences, 2011, 119, 286-292.	0.7	6
41	The role of cell surface markers and enamel matrix derivatives on human periodontal ligament mesenchymal progenitor responses inÂvitro. Biomaterials, 2011, 32, 7375-7388.	5.7	32
42	A simplified genetic design for mammalian enamel. Biomaterials, 2011, 32, 3151-3157.	5.7	20
43	The influence of Leucine-rich amelogenin peptide on MSC fate by inducing Wnt10b expression. Biomaterials, 2011, 32, 6478-6486.	5.7	31
44	PERP regulates enamel formation via effects on cell–cell adhesion and gene expression. Journal of Cell Science, 2011, 124, 745-754.	1.2	36
45	Folding, Assembly, and Aggregation of Recombinant Murine Amelogenins with T21I and P41T Point Mutations. Cells Tissues Organs, 2011, 194, 284-290.	1.3	13
46	Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin. PLoS ONE, 2011, 6, e18028.	1.1	9
47	Full length amelogenin binds to cell surface LAMP-1 on tooth root/periodontium associated cells. Archives of Oral Biology, 2010, 55, 417-425.	0.8	31
48	Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials, 2010, 31, 9202-9211.	5.7	84
49	Perturbed Amelogenin Secondary Structure Leads to Uncontrolled Aggregation in Amelogenesis Imperfecta Mutant Proteins. Journal of Biological Chemistry, 2010, 285, 40593-40603.	1.6	29
50	Science Is the Fuel for the Engine of Technology and Clinical Practice. Journal of the American Dental Association, 2009, 140, 17S-24S.	0.7	13
51	Leucine-rich amelogenin peptide induces osteogenesis by activation of the Wnt pathway. Biochemical and Biophysical Research Communications, 2009, 387, 558-563.	1.0	42
52	The Ultrastructural and Mechanical Analysis of the Dentition of Mice Lacking the NBCe1 Na+/HCO3― Cotransporter. FASEB Journal, 2009, 23, 800.6.	0.2	1
53	Biglycan Overexpression on Tooth Enamel Formation in Transgenic Mice. Anatomical Record, 2008, 291, 1246-1253.	0.8	9
54	Bioactive Nanofibers Instruct Cells to Proliferate and Differentiate During Enamel Regeneration. Journal of Bone and Mineral Research, 2008, 23, 1995-2006.	3.1	123

#	Article	IF	CITATIONS
55	Leucine-rich amelogenin peptide induces osteogenesis in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2008, 367, 1-6.	1.0	56
56	Derivation of cranial neural crest-like cells from human embryonic stem cells. Biochemical and Biophysical Research Communications, 2008, 376, 542-547.	1.0	45
57	Wholeâ€Tooth Regeneration: It Takes a Village of Scientists, Clinicians, and Patients. Journal of Dental Education, 2008, 72, 903-911.	0.7	22
58	Whole-tooth regeneration: it takes a village of scientists, clinicians, and patients. Journal of Dental Education, 2008, 72, 903-11.	0.7	15
59	CCAAT/Enhancer-binding Protein δ (C/EBPδ) Maintains Amelogenin Expression in the Absence of C/EBPα in Vivo. Journal of Biological Chemistry, 2007, 282, 29882-29889.	1.6	19
60	Ectopic Expression of Dentin Sialoprotein during Amelogenesis Hardens Bulk Enamel. Journal of Biological Chemistry, 2007, 282, 5340-5345.	1.6	43
61	Determination of protein regions responsible for interactions of amelogenin with CD63 and LAMP1. Biochemical Journal, 2007, 408, 347-354.	1.7	39
62	Physical dissection of the CCAAT/enhancer-binding protein α in regulating the mouse amelogenin gene. Biochemical and Biophysical Research Communications, 2007, 354, 56-61.	1.0	19
63	The nucleation and growth of calcium phosphate by amelogenin. Journal of Crystal Growth, 2007, 304, 407-415.	0.7	82
64	Protein–Protein Interactions of the Developing Enamel Matrix. Current Topics in Developmental Biology, 2006, 74, 57-115.	1.0	136
65	Amelogenins regulate expression of genes associated with cementoblasts in vitro. European Journal of Oral Sciences, 2006, 114, 239-243.	0.7	36
66	Protein self-assembly creates a nanoscale device for biomineralization. Materials Science and Engineering C, 2006, 26, 1296-1300.	3.8	22
67	Altering Biomineralization by Protein Design. Journal of Biological Chemistry, 2006, 281, 21173-21182.	1.6	40
68	NF-Y and CCAAT/Enhancer-binding Protein α Synergistically Activate the Mouse Amelogenin Gene*. Journal of Biological Chemistry, 2006, 281, 16090-16098.	1.6	34
69	Enamel Matrix Protein Interactions. Journal of Bone and Mineral Research, 2005, 20, 1032-1040.	3.1	69
70	Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evolution & Development, 2005, 7, 440-457.	1.1	159
71	Fluoride Induces Endoplasmic Reticulum Stress in Ameloblasts Responsible for Dental Enamel Formation. Journal of Biological Chemistry, 2005, 280, 23194-23202.	1.6	147
72	Dentin Sialoprotein and Dentin Phosphoprotein Overexpression during Amelogenesis. Journal of Biological Chemistry, 2005, 280, 31991-31998.	1.6	54

#	Article	IF	CITATIONS
73	The COOH Terminus of the Amelogenin, LRAP, Is Oriented Next to the Hydroxyapatite Surface. Journal of Biological Chemistry, 2004, 279, 40263-40266.	1.6	131
74	Leucine-Rich Amelogenin Peptide: A Candidate Signaling Molecule During Cementogenesis. Journal of Periodontology, 2004, 75, 1126-1136.	1.7	84
75	Perturbed Amelogenin Protein Self-assembly Alters Nanosphere Properties Resulting in Defective Enamel Formation. Materials Research Society Symposia Proceedings, 2004, 823, W6.2.1.	0.1	1
76	Enamel Structure Properties Controlled by Engineered Proteins in Transgenic Mice. Journal of Bone and Mineral Research, 2003, 18, 2052-2059.	3.1	44
77	Functional Domains for Amelogenin Revealed by Compound Genetic Defects. Journal of Bone and Mineral Research, 2003, 18, 466-472.	3.1	38
78	Amelogenin Protein Exhibits a Modular Design: Implications for Form and Function. Connective Tissue Research, 2003, 44, 47-51.	1.1	50
79	Amelogenin: A Potential Regulator of Cementum-Associated Genes. Journal of Periodontology, 2003, 74, 1423-1431.	1.7	84
80	Microphthalmia Resulting fromMsx2-Induced Apoptosis in the Optic Vesicle. , 2003, 44, 2404.		46
81	Amelogenin Self-Assembly and the Role of the Proline Located within the Carboxyl-Teleopeptide. Connective Tissue Research, 2003, 44, 52-57.	1.1	20
82	A Transgenic Animal Model Resembling Amelogenesis Imperfecta Related to Ameloblastin Overexpression. Journal of Biological Chemistry, 2003, 278, 19447-19452.	1.6	88
83	Amelogenin Protein Exhibits a Modular Design: Implications for Form and Function. Connective Tissue Research, 2003, 44, 47-51.	1.1	13
84	Amelogenin protein exhibits a modular design: implications for form and function. Connective Tissue Research, 2003, 44 Suppl 1, 47-51.	1.1	19
85	Altered Amelogenin Self-assembly Based on Mutations Observed in Human X-linked Amelogenesis Imperfecta (AIH1). Journal of Biological Chemistry, 2002, 277, 17112-17116.	1.6	37
86	Regulated gene expression dictates enamel structure and tooth function. Matrix Biology, 2001, 20, 273-292.	1.5	161
87	Structure-Property Correlation in Genetically-Engineered Mouse Enamel. Microscopy and Microanalysis, 2001, 7, 992-993.	0.2	0
88	The Dentinoâ€enamel Junction is a Broad Transitional Zone Uniting Dissimilar Bioceramic Composites. Journal of the American Ceramic Society, 2000, 83, 238-40.	1.9	86
89	ldentification of CCAAT/Enhancer-binding Protein α as a Transactivator of the Mouse Amelogenin Gene. Journal of Biological Chemistry, 2000, 275, 12273-12280.	1.6	72
90	A Tuftelin-interacting Protein (TIP39) Localizes to the Apical Secretory Pole of Mouse Ameloblasts. Journal of Biological Chemistry, 2000, 275, 22284-22292.	1.6	40

#	Article	IF	CITATIONS
91	Functional Antagonism between Msx2 and CCAAT/Enhancer-binding Protein α in Regulating the Mouse Amelogenin Gene Expression Is Mediated by Protein-Protein Interaction. Journal of Biological Chemistry, 2000, 275, 29066-29075.	1.6	69
92	Enamel Biomineralization Defects Result from Alterations to Amelogenin Self-Assembly. Journal of Structural Biology, 2000, 132, 191-200.	1.3	110
93	Micro & Nano-Scale Structure of Enamel and Dentin-Enamel Junction of Human Teeth. Microscopy and Microanalysis, 1999, 5, 1010-1011.	0.2	1
94	Cloning and Characterization of the Murine Ameloblastin Promoter. Journal of Biological Chemistry, 1999, 274, 20738-20743.	1.6	34
95	Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Materials Science and Engineering C, 1999, 7, 119-128.	3.8	177
96	Msx2Gene Dosage Influences the Number of Proliferative Osteogenic Cells in Growth Centers of the Developing Murine Skull: A Possible Mechanism forMSX2-Mediated Craniosynostosis in Humans. Developmental Biology, 1999, 205, 260-274.	0.9	194
97	Identification of Tuftelin-and Amelogenin-Interacting Proteins Using the Yeast Two-Hybrid System. Connective Tissue Research, 1998, 38, 257-267.	1.1	26
98	Protein Interactions During Assembly of the Enamel Organic Extracellular Matrix. Journal of Bone and Mineral Research, 1997, 12, 221-227.	3.1	145
99	Carboxyl-Region of Tuftelin Mediates Self-Assembly. Connective Tissue Research, 1996, 35, 157-161.	1.1	15
100	The Murine Amelogenin Promoter: Developmentally Regulated Expression in Transgenic Animals. Connective Tissue Research, 1996, 35, 41-47.	1.1	44
101	Enamel biology logodaedaly: Getting to the root of the problem, or "who's on first…― Journal of Bone and Mineral Research, 1996, 11, 899-904.	3.1	23
102	Temperature Sensitive Simian Virus 40 Large T Antigen Immortalization of Murine Odontoblast Cell Cultures: Establishment of Clonal Odontoblast Cell Line. Connective Tissue Research, 1995, 33, 97-103.	1.1	99
103	Regulation of the Msx2 homeobox gene during mouse embryogenesis: A transgene with 439 bp of 5′ flanking sequence is expressed exclusively in the apical ectodermal ridge of the developing limb. Mechanisms of Development, 1994, 48, 187-197.	1.7	72
104	Early Determination and Permissive Expression of Amelogenin Transcription during Mouse Mandibular First Molar Development. Developmental Biology, 1994, 164, 290-299.	0.9	54
105	Murine osteoclasts and spleen cell polykaryons are distinguished by mRNA phenotyping. Journal of Bone and Mineral Research, 1994, 9, 577-584.	3.1	42
106	Genomic Structure, Chromosomal Location, and Evolution of the Mouse Hox 8 Gene. Genomics, 1993, 16, 123-131.	1.3	56
107	A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell, 1993, 75, 443-450.	13.5	658
108	Epidermal Growth Factor Transcription, Translation, and Signal Transduction by Rat Type II Pneumocytes in Culture. American Journal of Respiratory Cell and Molecular Biology, 1992, 6, 44-49.	1.4	72

#	Article	IF	CITATIONS
109	Autosomal localization of the amelogenin gene in monotremes and marsupials: Implications for mammalian sex chromosome evolution. Genomics, 1992, 14, 785-789.	1.3	28
110	Alternative splicing of the mouse amelogenin primary RNA transcript contributes to amelogenin heterogeneity. Biochemical and Biophysical Research Communications, 1992, 188, 1253-1260.	1.0	115
111	Human ameloblastoma tumors express the amelogenin gene. Oral Surgery, Oral Medicine, and Oral Pathology, 1992, 74, 64-72.	0.6	44
112	Linkage of amelogenin (Amel) to the distal portion of the mouse X chromosome. Genomics, 1991, 10, 23-28.	1.3	57
113	Human developing enamel proteins exhibit a sex-linked dimorphism. Calcified Tissue International, 1991, 48, 288-290.	1.5	56
114	Cartilage, Bone and Tooth Induction During Early Embryonic Mouse Mandibular Morphogenesis Using Serumless, Chemically-Defined Medium. Connective Tissue Research, 1990, 24, 41-51.	1.1	23
115	Guest Editorial: Developmental Biology and Pathobiology: Fusion through Molecular Biology. Journal of Dental Research, 1989, 68, 1790-1791.	2.5	1
116	Of Mice and Men: Anatomy of the Amelogenin Gene. Connective Tissue Research, 1989, 22, 727-735.	1.1	13
117	Amelogenin gene expression in mouse incisor heterotopic recombinations. Differentiation, 1989, 41, 56-61.	1.0	27
118	Amelogenesis in vitro: a model for studies of epithelial postsecretory processing during tissue-specific extracellular matrix biomineralization. Differentiation, 1989, 41, 62-71.	1.0	5
119	Hertwig's epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemicallydefined medium. Journal of Periodontal Research, 1989, 24, 28-40.	1.4	102
120	Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics, 1989, 4, 162-168.	1.3	289
121	Dental Enamel Biomineralization: A Prospectus. Materials Research Society Symposia Proceedings, 1989, 174, 3.	0.1	0
122	Sequential expression and differential function of multiple enamel proteins during fetal, neonatal, and early postnatal stages of mouse molar organogenesis. Differentiation, 1988, 37, 26-39.	1.0	97
123	Molecular determinants of cranial neural crest-derived odontogenic ectomesenchyme during dentinogenesis. American Journal of Medical Genetics Part A, 1988, 31, 7-22.	2.4	20
124	Factors Influencing the Expression of Dental Extracellular Matrix Biomineralization. Novartis Foundation Symposium, 1988, 136, 22-41.	1.2	4
125	DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamel-specific protein. Biochemical and Biophysical Research Communications, 1985, 129, 812-818.	1.0	214
126	Concepts of epithelial-mesenchymal interactions during development: Tooth and lung organogenesis. Journal of Cellular Biochemistry, 1984, 26, 117-125.	1.2	45

#	Article	IF	CITATIONS
127	De novo gene expression detected by amelogenin gene transcript analysis. Developmental Biology, 1984, 104, 255-258.	0.9	43