Amir Sheikhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4547924/publications.pdf

Version: 2024-02-01

257450 182427 2,753 64 24 51 h-index citations g-index papers 66 66 66 3915 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoengineering cellulose for the selective removal of neodymium: Towards sustainable rare earth element recovery. Chemical Engineering Journal, 2022, 428, 131086.	12.7	15
2	Engineering hairy cellulose nanocrystals for chemotherapy drug capture. Materials Today Chemistry, 2022, 23, 100711.	3.5	6
3	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices. Advanced Materials, 2022, 34, e2200254.	21.0	18
4	Assessing the aneurysm occlusion efficacy of a shear-thinning biomaterial in a 3D-printed model. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105156.	3.1	3
5	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices (Adv. Mater. 20/2022). Advanced Materials, 2022, 34, .	21.0	1
6	Highly functional bio-based micro- and nano-structured materials for neodymium recovery. Chemical Engineering Journal, 2022, 447, 137418.	12.7	4
7	Three-dimensionally printable shear-thinning triblock copolypeptide hydrogels with antimicrobial potency. Biomaterials Science, 2021, 9, 5144-5149.	5.4	8
8	In Vivo Printing of Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries. Advanced Healthcare Materials, 2021, 10, e2002152.	7. 6	59
9	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	8.3	61
10	Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions. Nano-Micro Letters, 2021, 13, 212.	27.0	28
11	3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano, 2020, 14, 1520-1532.	14.6	151
12	Sequential modular simulation of circulating fluidized bed reactors. Canadian Journal of Chemical Engineering, 2020, 98, 1003-1016.	1.7	2
13	In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering. Bioengineering and Translational Medicine, 2020, 5, e10180.	7.1	33
14	Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. Biofabrication, 2020, 12, 045006.	7.1	63
15	Synthesis of Injectable Shearâ€Thinning Biomaterials of Various Compositions of Gelatin and Synthetic Silicate Nanoplatelet. Biotechnology Journal, 2020, 15, e1900456.	3.5	25
16	Engineering Tough, Injectable, Naturally Derived, Bioadhesive Composite Hydrogels. Advanced Healthcare Materials, 2020, 9, e1901722.	7.6	78
17	Microengineered Emulsion-to-Powder Technology for the High-Fidelity Preservation of Molecular, Colloidal, and Bulk Properties of Hydrogel Suspensions. ACS Applied Polymer Materials, 2019, 1, 1935-1941.	4.4	5
18	Modular microporous hydrogels formed from microgel beads with orthogonal thermo-chemical responsivity: Microfluidic fabrication and characterization. MethodsX, 2019, 6, 1747-1752.	1.6	23

#	Article	IF	CITATIONS
19	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	4.3	154
20	Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. Scientific Reports, 2019, 9, 6535.	3.3	39
21	Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Science Advances, 2019, 5, eaav1281.	10.3	229
22	Bone Bioprinting: Advancing Frontiers in Bone Bioprinting (Adv. Healthcare Mater. 7/2019). Advanced Healthcare Materials, 2019, 8, 1970030.	7.6	3
23	Advancing Frontiers in Bone Bioprinting. Advanced Healthcare Materials, 2019, 8, e1801048.	7.6	164
24	Hall of Fame Article: Minimally Invasive and Regenerative Therapeutics (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970005.	21.0	2
25	Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials, 2019, 192, 560-568.	11.4	116
26	Recent advances in nanoengineering cellulose for cargo delivery. Journal of Controlled Release, 2019, 294, 53-76.	9.9	87
27	Minimally Invasive and Regenerative Therapeutics. Advanced Materials, 2019, 31, e1804041.	21.0	112
28	Emerging Cellulose-Based Nanomaterials and Nanocomposites. , 2019, , 307-351.		16
29	Gelatinâ€polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioengineering and Translational Medicine, 2019, 4, 96-115.	7.1	249
30	Colloidal Starch and Cellulose Nanocrystals Unite To Improve the Mechanical Properties of Paper: From Enhanced Coatings to Reinforced Nanocomposites. ACS Applied Nano Materials, 2018, 1, 1841-1852.	5.0	25
31	Nanoengineering colloidal and polymeric celluloses for threshold scale inhibition: towards universal biomass-based crystal modification. Materials Horizons, 2018, 5, 248-255.	12.2	15
32	Biomimetic scale-resistant polymer nanocomposites: towards universal additive-free scale inhibition. Journal of Materials Chemistry A, 2018, 6, 10189-10195.	10.3	11
33	Rational design of molecularly engineered biomimetic threshold scale inhibitors. Journal of Materials Chemistry A, 2018, 6, 24058-24065.	10.3	6
34	More than my publications. Science, 2018, 362, 118-118.	12.6	0
35	Overcoming Interfacial Scaling Using Engineered Nanocelluloses: A QCM-D Study. ACS Applied Materials & Description (1988) 10, 34553-34560.	8.0	7
36	Biomimetic dendrimers for mineralization: rare fibrous amorphous calcium carbonate (ACC) and branch-and-bud ACCâ€"vaterite polymorphs. Materials Chemistry Frontiers, 2018, 2, 2081-2090.	5.9	6

#	Article	IF	Citations
37	Effect of ionic strength on shear-thinning nanoclay–polymer composite hydrogels. Biomaterials Science, 2018, 6, 2073-2083.	5.4	89
38	Colloidal aspects of Janus-like hairy cellulose nanocrystalloids. Current Opinion in Colloid and Interface Science, 2017, 29, 21-31.	7.4	45
39	Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017, 139, 163-171.	11.4	140
40	Colloidal nano-toolbox for molecularly regulated polymerization: chemorheology over 6 decades of viscoelasticity. Materials Horizons, 2017, 4, 1165-1170.	12.2	5
41	Squishy nanotraps: hybrid cellulose nanocrystal-zirconium metallogels for controlled trapping of biomacromolecules. Chemical Communications, 2017, 53, 8747-8750.	4.1	7
42	Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy. Molecules, 2017, 22, 868.	3.8	19
43	Sequential-based process modelling of a circulating fluidized bed reactor. Computer Aided Chemical Engineering, 2017, 40, 109-114.	0.5	1
44	Trapping It Softly: Ultrasoft Zirconium Metallogels for Macromolecule Entrapment and Reconfiguration. ACS Macro Letters, 2016, 5, 904-908.	4.8	8
45	Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale, 2016, 8, 15101-15114.	5.6	111
46	Hydrogel–colloid interfacial interactions: a study of tailored adhesion using optical tweezers. Soft Matter, 2016, 12, 6575-6587.	2.7	7
47	Reusable Green Aerogels from Cross-Linked Hairy Nanocrystalline Cellulose and Modified Chitosan for Dye Removal. Langmuir, 2016, 32, 11771-11779.	3.5	145
48	Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology. Journal of Visualized Experiments, 2016, , .	0.3	16
49	A Leaf out of Nature's Book: Hairy Nanocelluloses for Bioinspired Mineralization. Crystal Growth and Design, 2016, 16, 4627-4634.	3.0	16
50	Macromolecule-based platforms for developing tailor-made formulations for scale inhibition. Environmental Science: Water Research and Technology, 2016, 2, 71-84.	2.4	23
51	Copper Removal Using Electrosterically Stabilized Nanocrystalline Cellulose. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11301-11308.	8.0	106
52	On the flow direction effect in sequential modular simulations: A case study on fluidized bed biomass gasifiers. International Journal of Hydrogen Energy, 2015, 40, 2552-2567.	7.1	8
53	Sequence-based Process Modeling of Fluidized Bed Biomass Gasification. ACS Sustainable Chemistry and Engineering, 2015, 3, 2640-2651.	6.7	13
54	Effect of land cover and green space on land surface temperature of a fast growing economic region in Malaysia. , 2015 , , .		2

#	Article	IF	CITATION
55	Electroacoustic characterization of conventional and electrosterically stabilized nanocrystalline celluloses. Journal of Colloid and Interface Science, 2014, 432, 151-157.	9.4	44
56	Exploring the role of green and blue infrastructure in reducing temperature in Iskandar Malaysia using remote sensing approach. IOP Conference Series: Earth and Environmental Science, 2014, 18, 012156.	0.3	3
57	Understanding bubble hydrodynamics in bubble columns. Experimental Thermal and Fluid Science, 2013, 45, 63-74.	2.7	14
58	Experimental investigation on the hydrodynamics of a gasâ€"liquidâ€"solid fluidized bed using vibration signature and pressure fluctuation analyses. International Journal of Heat and Fluid Flow, 2013, 42, 190-199.	2.4	13
59	Frequency-based characterization of liquid–solid fluidized bed hydrodynamics using the analysis of vibration signature and pressure fluctuations. Powder Technology, 2013, 235, 787-796.	4.2	17
60	Sequential Modeling of Coal Volatile Combustion in Fluidized Bed Reactors. Energy &	5.1	15
61	Sequential-Based Process Modeling of Natural Gas Combustion in a Fluidized Bed Reactor. Energy & Lamp; Fuels, 2012, 26, 2058-2067.	5.1	23
62	Hydrodynamic characterisation of liquid–solid two–phase fluidised beds: Vibration signature and pressure fluctuations analyses. Canadian Journal of Chemical Engineering, 2012, 90, 1646-1653.	1.7	14
63	Sequential modular simulation of ethanol production in a three-phase fluidized bed bioreactor. Biochemical Engineering Journal, 2012, 63, 95-103.	3.6	13
64	Hydrodynamics and mass transfer performance of rotating sieved disc contactors used for reversed micellar extraction of protein. Chemical Engineering Science, 2009, 64, 2301-2306.	3.8	12