
Nuno Bernardes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4547918/publications.pdf Version: 2024-02-01

NUNO REPNARDES

#	Article	IF	CITATIONS
1	Impact of Ca2+-Induced PI(4,5)P2 Clusters on PH-YFP Organization and Protein-Protein Interactions. Biomolecules, 2022, 12, 912.	4.0	0
2	Effects of the Flanking polyQ Regions and Membrane Physical Properties on Huntingtin Binding to Lipid Vesicles. Biophysical Journal, 2021, 120, 32a.	0.5	0
3	Burkholderia cenocepacia transcriptome during the early contacts with giant plasma membrane vesicles derived from live bronchial epithelial cells. Scientific Reports, 2021, 11, 5624.	3.3	5
4	<i>Burkholderia cenocepacia</i> BCAM2418â€induced antibody inhibits bacterial adhesion, confers protection to infection and enables identification of host glycans as adhesin targets. Cellular Microbiology, 2021, 23, e13340.	2.1	4
5	p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. Journal of Controlled Release, 2021, 337, 329-342.	9.9	35
6	The Azurin-Derived Peptide CT-p19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death. Biomedicines, 2021, 9, 1194.	3.2	6
7	Quantitative FRET Microscopy Reveals a Crucial Role of Cytoskeleton in Promoting PI(4,5)P2 Confinement. International Journal of Molecular Sciences, 2021, 22, 11727.	4.1	1
8	Overcoming the Plasma Membrane. , 2021, , 339-354.		0
9	Scalable Production of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a Microcarrier-Based Bioreactor Culture System. Frontiers in Cell and Developmental Biology, 2020, 8, 553444.	3.7	78
10	Conditioned Medium From Azurin-Expressing Human Mesenchymal Stromal Cells Demonstrates Antitumor Activity Against Breast and Lung Cancer Cell Lines. Frontiers in Cell and Developmental Biology, 2020, 8, 471.	3.7	10
11	The Anticancer Potential of the Bacterial Protein Azurin and Its Derived Peptide p28. , 2019, , 319-338.		2
12	Prospective Therapeutic Applications of Bacteriocins as Anticancer Agents. , 2019, , 339-366.		0
13	Perturbing the Dynamics and Organization of Cell Membrane Components: A New Paradigm for Cancer-Targeted Therapies. International Journal of Molecular Sciences, 2018, 19, 3871.	4.1	74
14	Azurin interaction with the lipid raft components ganglioside GM-1 and caveolin-1 increases membrane fluidity and sensitivity to anti-cancer drugs. Cell Cycle, 2018, 17, 1649-1666.	2.6	24
15	Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nature Communications, 2017, 8, 922.	12.8	161
16	Modulation of membrane properties of lung cancer cells by azurin enhances the sensitivity to EGFR-targeted therapy and decreased β1 integrin-mediated adhesion. Cell Cycle, 2016, 15, 1415-1424.	2.6	33
17	Exploring the anticancer potential of the bacterial protein azurin. AIMS Microbiology, 2016, 2, 292-303.	2.2	16
18	High-throughput molecular profiling of a P-cadherin overexpressing breast cancer model reveals new targets for the anti-cancer bacterial protein azurin. International Journal of Biochemistry and Cell Biology, 2014, 50, 1-9.	2.8	22

NUNO BERNARDES

#	Article	IF	CITATIONS
19	Bacterial proteins and peptides in cancer therapy. Bioengineered, 2014, 5, 234-242.	3.2	39
20	Engineering of bacterial strains and their products for cancer therapy. Applied Microbiology and Biotechnology, 2013, 97, 5189-5199.	3.6	56
21	The Bacterial Protein Azurin Impairs Invasion and FAK/Src Signaling in P-Cadherin-Overexpressing Breast Cancer Cell Models. PLoS ONE, 2013, 8, e69023.	2.5	30
22	Recent Patents on Live Bacteria and their Products as Potential Anticancer Agents. Recent Patents on Anti-Cancer Drug Discovery, 2012, 7, 31-55.	1.6	17
23	The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS Microbiology Letters, 2012, 328, 61-69.	1.8	52
24	Bacterial protein azurin as a new candidate drug to treat untreatable breast cancers. , 2011, , .		3
25	Microbial-based therapy of cancer: Current progress and future prospects. Bioengineered Bugs, 2010, 1, 178-190.	1.7	72