
Santosh Dhakal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4547539/publications.pdf Version: 2024-02-01

SANTOSH DHARAI

#	Article	IF	CITATIONS
1	Female-biased effects of aging on a chimeric hemagglutinin stalk-based universal influenza virus vaccine in mice. Vaccine, 2022, 40, 1624-1633.	1.7	10
2	Sex-specific effects of age and body mass index on antibody responses to seasonal influenza vaccines in healthcare workers. Vaccine, 2022, 40, 1634-1642.	1.7	23
3	124I-Iodo-DPA-713 Positron Emission Tomography in a Hamster Model of SARS-CoV-2 Infection. Molecular Imaging and Biology, 2022, 24, 135-143.	1.3	16
4	Progression and Resolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Golden Syrian Hamsters. American Journal of Pathology, 2022, 192, 195-207.	1.9	22
5	A bacterial extracellular vesicleâ€based intranasal vaccine against SARSâ€CoVâ€2 protects against disease and elicits neutralizing antibodies to wildâ€type and Delta variants. Journal of Extracellular Vesicles, 2022, 11, e12192.	5.5	60
6	Sex biases in infectious diseases research. Journal of Experimental Medicine, 2022, 219, .	4.2	6
7	Gut Microbiota of Obese Children Influences Inflammatory Mucosal Immune Pathways in the Respiratory Tract to Influenza Virus Infection: Optimization of an Ideal Duration of Microbial Colonization in a Gnotobiotic Pig Model. Microbiology Spectrum, 2022, 10, e0267421.	1.2	3
8	The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. MSphere, 2022, 7, .	1.3	16
9	Risk Factors Associated with Avian Influenza Subtype H9 Outbreaks in Poultry Farms of Central Lowland Nepal. Infectious Disease Reports, 2022, 14, 525-536.	1.5	2
10	Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacological Reviews, 2021, 73, 730-762.	7.1	80
11	Immunity and Protective Efficacy of Mannose Conjugated Chitosan-Based Influenza Nanovaccine in Maternal Antibody Positive Pigs. Frontiers in Immunology, 2021, 12, 584299.	2.2	22
12	Effect of an Adenovirus-Vectored Universal Influenza Virus Vaccine on Pulmonary Pathophysiology in a Mouse Model. Journal of Virology, 2021, 95, .	1.5	7
13	Durable SARS-CoV-2 B cell immunity after mild or severe disease. Journal of Clinical Investigation, 2021, 131, .	3.9	76
14	Epidemiology of African Swine Fever and Its Risk in Nepal. Microbiology Research, 2021, 12, 580-590.	0.8	3
15	Combating the COVID-19 Pandemic: Experiences of the First Wave From Nepal. Frontiers in Public Health, 2021, 9, 613402.	1.3	14
16	Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. MBio, 2021, 12, e0097421.	1.8	69
17	Hamsters as a Model of Severe Acute Respiratory Syndrome Coronavirus-2. Comparative Medicine, 2021, 71, 398-410.	0.4	13
18	Review of Poultry Production and Poultry Vaccine Manufacture in Nepal. Global Journal of Agricultural and Allied Sciences, 2021, 3, 1-7.	1.2	5

SANTOSH DHAKAL

#	Article	IF	CITATIONS
19	Protective Efficacy of an Orf Virus-Vector Encoding the Hemagglutinin and the Nucleoprotein of Influenza A Virus in Swine. Frontiers in Immunology, 2021, 12, 747574.	2.2	8
20	Editorial: The Use of Nanoparticles in the Diagnosis and Therapy of Infectious Disease in Animals. Frontiers in Veterinary Science, 2021, 8, 829540.	0.9	3
21	Perceptions towards COVID-19 Vaccines and Willingness to Vaccinate in Nepal. Vaccines, 2021, 9, 1448.	2.1	11
22	Review of rabies in Nepal. One Health, 2020, 10, 100155.	1.5	23
23	Early Epidemiological Features of COVID-19 in Nepal and Public Health Response. Frontiers in Medicine, 2020, 7, 524.	1.2	26
24	Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to animals: an updated review. Journal of Translational Medicine, 2020, 18, 358.	1.8	97
25	Animal coronaviruses and coronavirus disease 2019: Lesson for One Health approach. Open Veterinary Journal, 2020, 10, 239-251.	0.3	15
26	Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydrate Polymers, 2020, 243, 116434.	5.1	38
27	Biological sex impacts COVID-19 outcomes. PLoS Pathogens, 2020, 16, e1008570.	2.1	218
28	Livestock and Poultry Production in Nepal and Current Status of Vaccine Development. Vaccines, 2020, 8, 322.	2.1	20
29	Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice. PLoS Pathogens, 2020, 16, e1008506.	2.1	28
30	Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Veterinary Microbiology, 2020, 242, 108611.	0.8	24
31	<p>Oral Deliverable Mucoadhesive Chitosan-Salmonella Subunit Nanovaccine for Layer Chickens</p> . International Journal of Nanomedicine, 2020, Volume 15, 761-777.	3.3	54
32	Short Communication: Bovine parainfluenza-3 antibodies in veal calves supplemented with cinnamaldehyde or lactoferrin. Applied Animal Science, 2020, 36, 118-123.	0.4	0
33	Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs. Frontiers in Immunology, 2020, 11, 596964.	2.2	11
34	A Nanoparticle-Poly(I:C) Combination Adjuvant Enhances the Breadth of the Immune Response to Inactivated Influenza Virus Vaccine in Pigs. Vaccines, 2020, 8, 229.	2.1	27
35	Coronaviruses in animals and humans, COVID-19 pandemic and one health approach. Applied Science and Technology Annals, 2020, 1, 187-193.	0.7	1
36	Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. Journal of Virology, 2019, 93, .	1.5	86

SANTOSH DHAKAL

#	Article	IF	CITATIONS
37	Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. Npj Vaccines, 2019, 4, 29.	2.9	124
38	Amish (Rural) vs. non-Amish (Urban) Infant Fecal Microbiotas Are Highly Diverse and Their Transplantation Lead to Differences in Mucosal Immune Maturation in a Humanized Germfree Piglet Model. Frontiers in Immunology, 2019, 10, 1509.	2.2	31
39	Protective immunity against influenza virus challenge by norovirus P particle-M2e and HA2-AtCYN vaccines in chickens. Vaccine, 2019, 37, 6454-6462.	1.7	9
40	Evaluation of CpC-ODN-adjuvanted polyanhydride-based intranasal influenza nanovaccine in pigs. Veterinary Microbiology, 2019, 237, 108401.	0.8	15
41	Nanoparticle-based vaccine development and evaluation against viral infections in pigs. Veterinary Research, 2019, 50, 90.	1.1	50
42	Corn-derived alpha-D-glucan nanoparticles as adjuvant for intramuscular and intranasal immunization in pigs. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 226-235.	1.7	22
43	Intranasal delivery of influenza antigen by nanoparticles, but not NKT-cell adjuvant differentially induces the expression of B-cell activation factors in mice and swine. Cellular Immunology, 2018, 329, 27-30.	1.4	12
44	Surface engineered polyanhydride-based oral Salmonella subunit nanovaccine for poultry. International Journal of Nanomedicine, 2018, Volume 13, 8195-8215.	3.3	26
45	Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. International Journal of Nanomedicine, 2018, Volume 13, 6699-6715.	3.3	45
46	Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs. Frontiers in Immunology, 2018, 9, 934.	2.2	116
47	Polyanhydride nanovaccine against swine influenza virus in pigs. Vaccine, 2017, 35, 1124-1131.	1.7	41
48	Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. Journal of Controlled Release, 2017, 247, 194-205.	4.8	102
49	Supplementation of inactivated influenza vaccine with norovirus P particle-M2e chimeric vaccine enhances protection against heterologous virus challenge in chickens. PLoS ONE, 2017, 12, e0171174.	1.1	15
50	Comparative Advantage of Keyhole Right Flank Laparotomy and Ventral Midline Celiotomy for Ovariohysterectomy in Bitches. International Journal of Applied Sciences and Biotechnology, 2016, 4, 198-202.	0.4	4
51	Major Health Problems and Diseases of Street Dogs in Pokhara Valley, Nepal. International Journal of Applied Sciences and Biotechnology, 2016, 4, 53-56.	0.4	4
52	Inactivated porcine reproductive and respiratory syndrome virus vaccine adjuvanted with Montanideâ,,¢ Gel 01 ST elicits virus-specific cross-protective inter-genotypic response in piglets. Veterinary Microbiology, 2016, 192, 81-89.	0.8	16
53	Comparative analysis of routes of immunization of a live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in a heterologous virus challenge study. Veterinary Research, 2016, 47, 45.	1.1	11
54	Mutations in a Highly Conserved Motif of nsp1β Protein Attenuate the Innate Immune Suppression Function of Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2016, 90, 3584-3599.	1.5	34

SANTOSH DHAKAL

#	Article	IF	CITATIONS
55	Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Archives of Virology, 2016, 161, 1579-1589.	0.9	18
56	Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs. Veterinary Microbiology, 2016, 186, 157-163.	0.8	24
57	Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs. PLoS ONE, 2016, 11, e0151922.	1.1	71
58	Prevalence of Demodectic Mange in Canines of Kathmandu Valley having Skin Disorder and Its Associated Risk Factors. International Journal of Applied Sciences and Biotechnology, 2015, 3, 459-463.	0.4	2
59	Sero-Prevalence of Porcine Reproductive and Respiratory Syndrome (PRRS) in Pigs of Different Developmental Regions of Nepal. International Journal of Applied Sciences and Biotechnology, 2015, 3, 218-222.	0.4	5
60	Seroprevalence of Trichinella Spp. in Pigs and Knowledge, Attitude and Practices of Pig Farmers of Eastern and Midwestern Regions of Nepal. International Journal of Applied Sciences and Biotechnology, 2015, 3, 402-407.	0.4	0
61	Survey on Street Dog Population in Pokhara Valley of Nepal. Bangladesh Journal of Veterinary Medicine, 2015, 13, 65-70.	0.4	10
62	Evaluation of humoral immune status in porcine epidemic diarrhea virus (PEDV) infected sows under field conditions. Veterinary Research, 2015, 46, 140.	1.1	24
63	Japanese encephalitis: Challenges and intervention opportunities in Nepal. Veterinary World, 2015, 8, 61-65.	0.7	10
64	Prevalence, antibiogram and risk factors of thermophilic campylobacter spp. in dressed porcine carcass of Chitwan, Nepal. BMC Microbiology, 2014, 14, 85.	1.3	13
65	Regional Variation in Pig Farmer Awareness and Actions Regarding Japanese Encephalitis in Nepal: Implications for Public Health Education. PLoS ONE, 2014, 9, e85399.	1.1	14
66	Pig Sero-Survey and Farm Level Risk Factor Assessment for Japanese Encephalitis in Nepal. International Journal of Applied Sciences and Biotechnology, 2014, 2, 311-314.	0.4	9
67	Seroprevalence of brucellosis in different animal species of Kailali district, Nepal. International Journal of Infection and Microbiology, 2013, 2, 22-25.	0.3	17
68	Prevalence of gastrointestinal zoonotic helminths in dogs of Kathmandu, Nepal. International Journal of Infection and Microbiology, 2013, 2, 91-94.	0.3	11
69	Assessment of pork handlers' knowledge and hygienic status of pig meat shops of Chitwan district focusing campylobacteriosis risk factors. International Journal of Infection and Microbiology, 2013, 2, 17-21.	0.3	5
70	Status of tuberculosis in bovine animals raised by tuberculosis infected patients in Western Chitwan, Nepal. International Journal of Infection and Microbiology, 2013, 1, 49-53.	0.3	10
71	Dengue Virus Detection by Serological and Molecular Method in Different Hospitals of Nepal. Medical Journal of Shree Birendra Hospital, 2013, 11, 24-28.	0.0	0
72	Knowledge and Practices of Pig Farmers Regarding Japanese Encephalitis in Kathmandu, Nepal. Zoonoses and Public Health, 2012, 59, 568-574.	0.9	16