Chakravarthi Mohan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4547487/publications.pdf

Version: 2024-02-01

28 papers 786

686830 13 h-index 23 g-index

28 all docs 28 docs citations

28 times ranked

797 citing authors

#	Article	IF	CITATIONS
1	Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. Sugar Tech, 2022, 24, 369-385.	0.9	9
2	Overexpression of expansin EaEXPA1, a cell wall loosening protein enhances drought tolerance in sugarcane. Industrial Crops and Products, 2021, 159, 113035.	2.5	24
3	Sugarcane cystatins: From discovery to biotechnological applications. International Journal of Biological Macromolecules, 2021, 167, 676-686.	3.6	10
4	hRNAi-mediated knock-down of Sphenophorus levis V-ATPase E in transgenic sugarcane (Saccharum spp) Tj ETQ	q0 0 0 rgB	T /Overlock 10
5	Multiallelic, Targeted Mutagenesis of Magnesium Chelatase With CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane. Frontiers in Genome Editing, 2021, 3, 654996.	2.7	39
6	<i>In silico</i> characterisation and homology modelling of a pathogenesis-related protein from <i>Saccharum arundinaceum</i> Archives of Phytopathology and Plant Protection, 2020, 53, 199-216.	0.6	2
7	Development of Transgenic Sugarcane for Insect Resistance. , 2020, , 389-405.		0
8	Current Transformation Methods for Genome–Editing Applications in Energy Crop Sugarcane. , 2020, , 369-388.		1
9	Learning from transgenics: Advanced gene editing technologies should also bridge the gap with traditional genetic selection. Electronic Journal of Biotechnology, 2019, 41, 22-29.	1.2	5
10	Applications of Genome Engineering/Editing Tools in Plants. , 2019, , 143-165.		1
11	Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation. 3 Biotech, 2018, 8, 195.	1.1	67
12	Fruits as Prospective Reserves of bioactive Compounds: A Review. Natural Products and Bioprospecting, 2018, 8, 335-346.	2.0	89
13	Methods of Sugarcane Transformation. , 2017, , 51-60.		3
14	Novel Potential Candidate Promoters and Advanced Strategies for Sugarcane Transformation. , 2017, , 75-85.		0
15	Construction of a novel synthetic root-specific promoter and its characterization in transgenic tobacco plants. 3 Biotech, 2017, 7, 234.	1.1	19
16	Transgenic sugarcane overexpressing CaneCPI-1 negatively affects the growth and development of the sugarcane weevil Sphenophorus levis. Plant Cell Reports, 2017, 36, 193-201.	2.8	33
17	Genome Editing in Sugarcane: Challenges Ahead. Frontiers in Plant Science, 2016, 7, 1542.	1.7	42
18	De novo sequencing and transcriptome analysis of a low temperature tolerant Saccharum spontaneum clone IND 00-1037. Journal of Biotechnology, 2016, 231, 280-294.	1.9	60

#	ARTICLE	IF	CITATION
19	A novel PR10 promoter from Erianthus arundinaceus directs high constitutive transgene expression and is enhanced upon wounding in heterologous plant systems. Molecular Biology Reports, 2016, 43, 17-30.	1.0	13
20	Vacuolar targeting of râ€proteins in sugarcane leads to higher levels of purifiable commercially equivalent recombinant proteins in cane juice. Plant Biotechnology Journal, 2016, 14, 791-807.	4.1	34
21	Truncated Ubiquitin $5\hat{a}\in^2$ Regulatory Region from Erianthus arundinaceus Drives Enhanced Transgene Expression in Heterologous Systems. Molecular Biotechnology, 2015, 57, 820-835.	1.3	12
22	Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Science, 2015, 232, 23-34.	1.7	94
23	Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Reports, 2015, 34, 247-263.	2.8	122
24	Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance. Molecular Biotechnology, 2015, 57, 475-488.	1.3	45
25	Immunodiagnostic Properties of Wucheraria bancrofti SXP-1, a Potential Filarial Diagnostic Candidate Expressed in Tobacco Plant, Nicotiana tabacum. Applied Biochemistry and Biotechnology, 2015, 176, 1889-1903.	1.4	4
26	Micropropagation of Eucalyptus camaldulensis for the production of rejuvenated stock plants for microcuttings propagation and genetic fidelity assessment. New Forests, 2015, 46, 357-371.	0.7	15
27	Immunogenicity of Brugia malayi Abundant Larval Transcript-2, a potential filarial vaccine candidate expressed in tobacco. Plant Cell Reports, 2014, 33, 179-188.	2.8	7
28	$5\hat{a}$ €2 Regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots. Plant Cell Reports, 2013, 32, 1199-1210.	2.8	28