Denisa D Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4547311/publications.pdf Version: 2024-02-01

		3159	3487
216	34,606	92	182
papers	citations	h-index	g-index
017	217	017	25721
217	217	217	25721
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Advances, 2022, 6, 2001-2013.	5.2	59
2	The Prominent Role of Hematopoietic Peptidyl Arginine Deiminase 4 in Arthritis: Collagen―and Granulocyte <scp>Colony‧timulating</scp> Factor–Induced Arthritis Model in <scp>C57BL</scp> /6 Mice. Arthritis and Rheumatology, 2022, 74, 1139-1146.	5.6	9
3	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	8.5	119
4	Thromboinflammation: From Atherosclerosis to COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 1103-1112.	2.4	31
5	The role of platelets in thrombus fibrosis and vessel wall remodeling after venous thrombosis. Journal of Thrombosis and Haemostasis, 2021, 19, 387-399.	3.8	11
6	NLRP3 Inflammasome Assembly in Neutrophils Is Supported by PAD4 and Promotes NETosis Under Sterile Conditions. Frontiers in Immunology, 2021, 12, 683803.	4.8	79
7	Neutrophil stimulation with citrullinated histone H4 slows down calcium influx and reduces NET formation compared with native histone H4. PLoS ONE, 2021, 16, e0251726.	2.5	13
8	Citrullinated Fibrinogen Renders Clots Mechanically Less Stable, but Lysis-Resistant. Circulation Research, 2021, 129, 342-344.	4.5	8
9	The role of SERPIN citrullination in thrombosis. Cell Chemical Biology, 2021, 28, 1728-1739.e5.	5.2	11
10	Paul S. Frenette (1965–2021). Cell Stem Cell, 2021, 28, 1686-1689.	11.1	0
11	Recombinant human ADAMTS13 treatment and anti-NET strategies enhance skin allograft survival in mice. American Journal of Transplantation, 2020, 20, 1162-1169.	4.7	11
12	Cellular Mechanisms of NETosis. Annual Review of Cell and Developmental Biology, 2020, 36, 191-218.	9.4	216
13	Reply to Liu: The disassembly of the actin cytoskeleton is an early event during NETosis. Proceedings of the United States of America, 2020, 117, 22655-22656.	7.1	2
14	NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7326-7337.	7.1	219
15	Extracellular DNA NET-Works With Dire Consequences for Health. Circulation Research, 2019, 125, 470-488.	4.5	120
16	Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood, 2019, 134, 1458-1468.	1.4	69
17	Plasma Peptidylarginine Deiminase IV Promotes VWF-Platelet String Formation and Accelerates Thrombosis After Vessel Injury. Circulation Research, 2019, 125, 507-519.	4.5	72
18	Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Science Translational Medicine, 2018, 10, .	12.4	299

#	Article	IF	CITATIONS
19	Recombinant Human ADAMTS13 Treatment Improves Myocardial Remodeling and Functionality After Pressure Overload Injury in Mice. Journal of the American Heart Association, 2018, 7, .	3.7	22
20	Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury. Circulation Research, 2018, 123, 33-42.	4.5	205
21	A key role for Rac and Pak signaling in neutrophil extracellular traps (NETs) formation defines a new potential therapeutic target. American Journal of Hematology, 2018, 93, 269-276.	4.1	36
22	Solid peripheral tumor leads to systemic inflammation, astrocyte activation and signs of behavioral despair in mice. PLoS ONE, 2018, 13, e0207241.	2.5	13
23	Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB Journal, 2018, 32, 6258-6370.	0.5	93
24	Neutrophil cytoplasts induce T _H 17 differentiation and skew inflammation toward neutrophilia in severe asthma. Science Immunology, 2018, 3, .	11.9	157
25	Peptidylarginine deiminase 4 promotes age-related organ fibrosis. Journal of Experimental Medicine, 2017, 214, 439-458.	8.5	159
26	Unraveling Vascular Inflammation. Journal of the American College of Cardiology, 2017, 70, 1403-1412.	2.8	59
27	Mast Cells Granular Contents Are Crucial for Deep Vein Thrombosis in Mice. Circulation Research, 2017, 121, 941-950.	4.5	67
28	ADAMTS13 Deficiency Worsens Colitis and Exogenous ADAMTS13 Administration Decreases Colitis Severity in Mice. TH Open, 2017, 01, e11-e23.	1.4	10
29	Sirt3 deficiency does not affect venous thrombosis or NETosis despite mild elevation of intracellular ROS in platelets and neutrophils in mice. PLoS ONE, 2017, 12, e0188341.	2.5	17
30	Neutrophil elastaseâ€deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. Journal of Thrombosis and Haemostasis, 2016, 14, 551-558.	3.8	175
31	Priming of neutrophils toward NETosis promotes tumor growth. Oncolmmunology, 2016, 5, e1134073.	4.6	188
32	Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science, 2016, 352, 463-466.	12.6	210
33	Limiting prothrombin activation to meizothrombin is compatible with survival but significantly alters hemostasis in mice. Blood, 2016, 128, 721-731.	1.4	9
34	PAD4 Deficiency Decreases Inflammation and Susceptibility to Pregnancy Loss in a Mouse Model. Biology of Reproduction, 2016, 95, 132-132.	2.7	34
35	ADAMTS13 Endopeptidase Protects against Vascular Endothelial Growth Factor Inhibitor–Induced Thrombotic Microangiopathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 120-131.	6.1	11
36	NETosis promotes cancer-associated arterial microthrombosis presenting as ischemic stroke with troponin elevation. Thrombosis Research, 2016, 139, 56-64.	1.7	135

#	Article	IF	CITATIONS
37	Thrombosis in Myeloproliferative Neoplasms Is Linked to Increased Neutrophil Extracellular Trap (NET) Formation. Blood, 2016, 128, 633-633.	1.4	1
38	Dietary omega-3 alpha-linolenic acid does not prevent venous thrombosis in mice. Thrombosis and Haemostasis, 2015, 113, 177-184.	3.4	12
39	Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples. American Journal of Hematology, 2015, 90, 1155-1158.	4.1	123
40	Tissue factor expressed by circulating cancer cellâ€derived microparticles drastically increases the incidence of deep vein thrombosis in mice. Journal of Thrombosis and Haemostasis, 2015, 13, 1310-1319.	3.8	121
41	Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature Chemical Biology, 2015, 11, 189-191.	8.0	544
42	Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine, 2015, 21, 815-819.	30.7	824
43	P-selectin promotes neutrophil extracellular trap formation in mice. Blood, 2015, 126, 242-246.	1.4	378
44	PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood, 2015, 125, 1948-1956.	1.4	192
45	NETosis: A New Factor in Tumor Progression and Cancer-Associated Thrombosis. Seminars in Thrombosis and Hemostasis, 2014, 40, 277-283.	2.7	196
46	VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood, 2014, 123, 141-148.	1.4	228
47	Thrombosis: tangled up in NETs. Blood, 2014, 123, 2768-2776.	1.4	654
48	Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood, 2014, 123, 3818-3827.	1.4	281
49	Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. Journal of Thrombosis and Haemostasis, 2014, 12, 860-870.	3.8	211
50	The Role of Rac and Pak in Neutrophil Histone Hypercitrullination and Neutrophil Extracellular Traps Formation. Blood, 2014, 124, 462-462.	1.4	1
51	The F-BAR Protein PACSIN2 Regulates Platelet Intracellular Membrane Architecture and in Vivo Hemostatic Functions. Blood, 2014, 124, 4154-4154.	1.4	0
52	Isoflurane inhibits neutrophil recruitment in the cutaneous Arthus reaction model. Journal of Anesthesia, 2013, 27, 261-268.	1.7	35
53	Plasma DNA is elevated in patients with deep vein thrombosis. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2013, 1, 341-348.e1.	1.6	99
54	Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood, 2013, 121, 1008-1015.	1.4	260

#	Article	IF	CITATIONS
55	Neutrophils release extracellular <scp>DNA</scp> traps during storage of red blood cell units. Transfusion, 2013, 53, 3210-3216.	1.6	30
56	Elevated Levels of Circulating DNA and Chromatin Are Independently Associated With Severe Coronary Atherosclerosis and a Prothrombotic State. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2032-2040.	2.4	358
57	Endothelial Von Willebrand Factor Promotes Blood–Brain Barrier Flexibility and Provides Protection From Hypoxia and Seizures in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2112-2120.	2.4	62
58	Neutrophil extracellular traps. Oncolmmunology, 2013, 2, e22946.	4.6	181
59	Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8674-8679.	7.1	453
60	Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities. PLoS ONE, 2013, 8, e59032.	2.5	16
61	Dietary Alpha-Linolenic Acid Does Not Protect From Venous Thrombosis In The Vena Cava Stenosis Model. Blood, 2013, 122, 3621-3621.	1.4	Ο
62	Heme-Induced Neutrophil Extracellular Traps (NETs) Formation Contributes To Sickle Cell Disease Pathogenesis. Blood, 2013, 122, 184-184.	1.4	1
63	Extrahepatic High-Density Lipoprotein Receptor SR-BI and ApoA-I Protect Against Deep Vein Thrombosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1841-1847.	2.4	44
64	ARC15105 Is a Potent Antagonist of Von Willebrand Factor Mediated Platelet Activation and Adhesion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 902-909.	2.4	55
65	Targeting platelet function to improve drug delivery. Oncolmmunology, 2012, 1, 100-102.	4.6	27
66	Protective anti-inflammatory effect of ADAMTS13 on myocardial ischemia/reperfusion injury in mice. Blood, 2012, 120, 5217-5223.	1.4	107
67	Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood, 2012, 119, 1263-1273.	1.4	173
68	Extracellular Chromatin Is an Important Mediator of Ischemic Stroke in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1884-1891.	2.4	159
69	Neutrophil Extracellular Trap (NET) Impact on Deep Vein Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1777-1783.	2.4	465
70	Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13076-13081.	7.1	708
71	Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood, 2012, 119, 6335-6343.	1.4	270
72	Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood, 2012, 120, 1157-1164.	1.4	249

#	Article	IF	CITATIONS
73	von Willebrand Factor. Stroke, 2012, 43, 599-606.	2.0	151
74	ADAMTS13 exerts a thrombolytic effect in microcirculation. Thrombosis and Haemostasis, 2012, 108, 527-532.	3.4	27
75	Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. Journal of Experimental Medicine, 2012, 209, 819-835.	8.5	1,441
76	Shear-Activated Nanotherapeutics for Drug Targeting to Obstructed Blood Vessels. Science, 2012, 337, 738-742.	12.6	428
77	Neutrophil extracellular traps promote deep vein thrombosis in mice. Journal of Thrombosis and Haemostasis, 2012, 10, 136-144.	3.8	741
78	Mice with Genetic Modifications in Prothrombin Limiting Activation Cleavage Events to Meizothrombin Survive to Adulthood, but Exhibit Alterations in Hemostasis and Thrombus Formation. Blood, 2012, 120, 496-496.	1.4	0
79	Histones induce rapid and profound thrombocytopenia in mice. Blood, 2011, 118, 3708-3714.	1.4	365
80	von Willebrand factor–mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood, 2011, 117, 1400-1407.	1.4	369
81	The development of inflammatory joint disease is attenuated in mice expressing the anticoagulant prothrombin mutant W215A/E217A. Blood, 2011, 117, 6326-6337.	1.4	34
82	Rap1a activation by CalDAGâ€GEFI and p38 MAPK is involved in Eâ€selectinâ€dependent slow leukocyte rolling. European Journal of Immunology, 2011, 41, 2074-2085.	2.9	79
83	Increased Efficacy of Breast Cancer Chemotherapy in Thrombocytopenic Mice. Cancer Research, 2011, 71, 1540-1549.	0.9	72
84	Cancer-Associated Thrombosis: Cancer Cell-Derived Microparticles As a Trigger of Venous Thrombosis in a Mouse Model of Flow Restriction. Blood, 2011, 118, 34-34.	1.4	0
85	Extracellular DNA Traps Are Associated with Pathogenesis of TRALI in Humans and Mice. Blood, 2011, 118, 37-37.	1.4	10
86	Inhibition of Sialic Acid Loss Greatly Improves Survival of Refrigerated Platelets. Blood, 2011, 118, 1133-1133.	1.4	0
87	p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo. Blood, 2010, 115, 1835-1842.	1.4	90
88	A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. Journal of Experimental Medicine, 2010, 207, 1967-1979.	8.5	121
89	Integrin-independent role of CalDAG-GEFI in neutrophil chemotaxis. Journal of Leukocyte Biology, 2010, 88, 313-319.	3.3	28
90	Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15880-15885.	7.1	1,940

#	Article	IF	CITATIONS
91	The Generation of An Aptamer Inhibitor of Murine Von Willebrand Factor (VWF) Mediated Platelet Aggregation. Blood, 2010, 116, 4312-4312.	1.4	2
92	The Lack of ADAM17 Activity during Embryonic Development Causes Hemorrhage and Impairs Vessel Formation. PLoS ONE, 2010, 5, e13433.	2.5	26
93	The Role of VWF In BBB Permeability Associated with Hypoxia/Reoxygenation. Blood, 2010, 116, 2102-2102.	1.4	1
94	Addressing the Issue of the Pathogenesis of Deep Vein Thrombosis In Cancer. Blood, 2010, 116, 4220-4220.	1.4	0
95	Heparin Prevents Histone-Induced Thrombocytopenia and Mortality. Blood, 2010, 116, 2106-2106.	1.4	2
96	Thrombocytopenia Induced-Tumor Vascular Leakiness Increases Drug Efficacy. Blood, 2010, 116, 2105-2105.	1.4	0
97	Circulating Nucleosomes Reflect Disease Activity in Patients with Thrombotic Microangiopathies Blood, 2010, 116, 1437-1437.	1.4	Ο
98	Platelets: Guardians of Tumor Vasculature. Cancer Research, 2009, 69, 5623-5626.	0.9	98
99	Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovascular Research, 2009, 84, 137-144.	3.8	92
100	Inhibition of VEGF or TGF-β Signaling Activates Endothelium and Increases Leukocyte Rolling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1185-1192.	2.4	63
101	Innate Immune Cells Induce Hemorrhage in Tumors during Thrombocytopenia. American Journal of Pathology, 2009, 175, 1699-1708.	3.8	83
102	Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood, 2009, 113, 6015-6022.	1.4	72
103	The distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation. Blood, 2009, 113, 5323-5329.	1.4	71
104	von Willebrand factor–cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood, 2009, 114, 3329-3334.	1.4	228
105	Neutrophil Extracellular Traps Induce Platelet Adhesion and Thrombus Formation Blood, 2009, 114, 1345-1345.	1.4	7
106	VWF-Mediated Platelet Adhesion is Required for Deep Vein Thrombosis in a Flow Restriction Model Blood, 2009, 114, 473-473.	1.4	2
107	Recombinant ADAMTS13 Improves Neurological Outcome in Experimental Stroke in Mice Blood, 2009, 114, 3134-3134.	1.4	0
108	Filamin A Deficiency in Platelets Reveals Functional Impairment in ITAM-Based Signaling Blood, 2009, 114, 769-769.	1.4	1

#	Article	lF	CITATIONS
109	Von-Willebrand Factor Influences Blood Brain Barrier Permeability and Brain Inflammation in Experimental Allergic Encephalomyelitis. American Journal of Pathology, 2008, 173, 892-900.	3.8	42
110	The vessel wall and its interactions. Blood, 2008, 111, 5271-5281.	1.4	301
111	ADAMTS13: a new link between thrombosis and inflammation. Journal of Experimental Medicine, 2008, 205, 2065-2074.	8.5	190
112	Prothrombotic Effects of Fibronectin Isoforms Containing the EDA Domain. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 296-301.	2.4	46
113	Thrombocytopenia and Platelet Abnormalities in High-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1111-1116.	2.4	73
114	Glycoprotein Ibα and von Willebrand factor in primary platelet adhesion and thrombus formation: Lessons from mutant mice. Thrombosis and Haemostasis, 2008, 99, 264-270.	3.4	75
115	Peroxiredoxin1 Prevents Excessive Endothelial Activation and Early Atherosclerosis. Circulation Research, 2008, 103, 598-605.	4.5	105
116	Platelet Granule Secretion Continuously Prevents Intratumor Hemorrhage. Cancer Research, 2008, 68, 6851-6858.	0.9	196
117	Inflammation induces hemorrhage in thrombocytopenia. Blood, 2008, 111, 4958-4964.	1.4	315
118	The combined roles of ADAMTS13 and VWF in murine models of TTP, endotoxemia, and thrombosis. Blood, 2008, 111, 3452-3457.	1.4	89
119	Integrin-Independent Role of CalDAG-GEFI in Neutrophil Chemotaxis Blood, 2008, 112, 1266-1266.	1.4	2
120	VWF-Cleaving Protease ADAMTS13 Reduces Brain Injury Following Ischemic Stroke in Mice: Essential Role for VWF in Stroke. Blood, 2008, 112, 259-259.	1.4	0
121	Platelets Protect Tumors from Hemorrhage Induced by Stroma-Infiltrating Leukocytes. Blood, 2008, 112, 3916-3916.	1.4	0
122	Differential Stimulation of Monocytic Cells Results in Distinct Populations of Microparticles. Blood, 2008, 112, 1258-1258.	1.4	0
123	p38 MAPK Inhibition Prevents TACE-Mediated Receptor Shedding and Improves the Hemostatic Function of Stored Platelets Blood, 2008, 112, 990-990.	1.4	10
124	Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1621-1626.	7.1	178
125	Platelet Adhesion Receptors and Their Ligands in Mouse Models of Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 728-739.	2.4	107
126	Dynamic Visualization of Thrombopoiesis Within Bone Marrow. Science, 2007, 317, 1767-1770.	12.6	572

#	Article	IF	CITATIONS
127	von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in	1.4	91
128	Platelet adhesion receptors do not modulate infarct volume after a photochemically induced stroke in mice. Brain Research, 2007, 1185, 239-245.	2.2	14
129	Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. Journal of Clinical Investigation, 2007, 117, 1699-1707.	8.2	170
130	Deficiency of the VWF-Cleaving Protease ADAMTS13 Results in Increased Leukocyte Rolling and Adhesion in Mice Blood, 2007, 110, 290-290.	1.4	1
131	Metalloproteinase Inhibitors Increase the Survival of Long-Term Refrigerated Platelets in Mice Blood, 2007, 110, 419-419.	1.4	3
132	Mice Engineered To Express a Form of Thrombin Favoring Protein C Are Resistant to S. aureus-Induced Sepsis Blood, 2007, 110, 267-267.	1.4	6
133	CalDAG-GEFI and Protein Kinase C (PKC) Represent Alternative Pathways Leading to Activation of Integrin αIIbβ3 in Platelets Blood, 2007, 110, 3646-3646.	1.4	0
134	PSGL-1 regulates platelet P-selectin-mediated endothelial activation and shedding of P-selectin from activated platelets. Thrombosis and Haemostasis, 2007, 98, 806-12.	3.4	25
135	The role of platelet adhesion receptor GPIb far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16900-16905.	7.1	213
136	Mac-1 Signaling via Src-Family and Syk Kinases Results in Elastase-Dependent Thrombohemorrhagic Vasculopathy. Immunity, 2006, 25, 271-283.	14.3	111
137	Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood, 2006, 107, 591-593.	1.4	188
138	Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 855-860.	7.1	308
139	Decreased Plasma Fibronectin Leads to Delayed Thrombus Growth in Injured Arterioles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1391-1396.	2.4	55
140	Systemic antithrombotic effects of ADAMTS13. Journal of Experimental Medicine, 2006, 203, 767-776.	8.5	222
141	The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. Journal of Clinical Investigation, 2006, 116, 1913-1923.	8.2	316
142	The Role of Platelet Adhesion Receptor GPIb α Far Exceeds That of Its Main Ligand von Willebrand Factor in Arterial Thrombosis Blood, 2006, 108, 1797-1797.	1.4	21
143	Fibronectin Is Not the Only Important Molecule Required for Fibrinogen/VWF-Independent Platelet Aggregation: Study of Thrombosis in a New Strain of Triple Deficient Mice Blood, 2006, 108, 1515-1515.	1.4	9
144	von Willebrand Factor and Factor VIII Are Independently Required To Form Stable Occlusive Thrombi in Injured Veins Blood, 2006, 108, 1789-1789.	1.4	0

#	Article	IF	CITATIONS
145	Mice Lacking the Signaling Molecule, CalDAG-GEFI, Represent a Mouse Model for Leukocyte Adhesion Deficiency Type III Blood, 2006, 108, 674-674.	1.4	0
146	A Threshold Level of Von Willebrand Factor Is Required for Disease Pathogenesis in a Mouse Model of TTP Blood, 2006, 108, 177-177.	1.4	3
147	Formation of Platelet Strings and Microthrombi in the Presence of ADAMTS13 Inhibitor Does Not Require P-Selectin or β3 Integrin Blood, 2006, 108, 1782-1782.	1.4	Ο
148	Elevated soluble ICAMâ€1 levels induce immune deficiency and increase adiposity in mice. FASEB Journal, 2005, 19, 1018-1020.	0.5	41
149	A Direct Role for C1 Inhibitor in Regulation of Leukocyte Adhesion. Journal of Immunology, 2005, 174, 6462-6466.	0.8	82
150	Aspirin Induces Platelet Receptor Shedding via ADAM17 (TACE). Journal of Biological Chemistry, 2005, 280, 39716-39722.	3.4	56
151	New Links Between Inflammation and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1321-1324.	2.4	175
152	Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. Journal of Clinical Investigation, 2005, 115, 2752-2761.	8.2	283
153	The Metalloprotease ADAMTS13 Is a Natural Anti-Thrombotic Blood, 2005, 106, 409-409.	1.4	1
154	Downregulation of P-Selectin from Activated Platelets Involves Both Receptor Internalization and Shedding upon Binding to PSGL-1 Blood, 2005, 106, 2656-2656.	1.4	1
155	Differential Changes in Platelet VWF Receptor Following Refrigeration for Short or Long Periods Blood, 2005, 106, 3564-3564.	1.4	0
156	Fibrinogen and von Willebrand Factor-Independent Platelet Aggregation: The Essential Roles of β3 Integrin, Thrombin, and Divalent Ca2+ Cations Blood, 2005, 106, 2651-2651.	1.4	0
157	Elevated Levels of Homocysteine Compromise Blood-Brain Barrier Integrity in Mice Blood, 2005, 106, 3856-3856.	1.4	0
158	ICAM-1 and β2 Integrin Deficiency Impairs Fat Oxidation and Insulin Metabolism during Fasting. Molecular Medicine, 2004, 10, 72-79.	4.4	9
159	GPVI down-regulation in murine platelets through metalloproteinase-dependent shedding. Thrombosis and Haemostasis, 2004, 91, 951-958.	3.4	79
160	Tumor Necrosis Factor-α–Converting Enzyme (ADAM17) Mediates GPIbα Shedding From Platelets In Vitro and In Vivo. Circulation Research, 2004, 95, 677-683.	4.5	224
161	CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nature Medicine, 2004, 10, 982-986.	30.7	348
162	Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood–brain barrier. Biochemical and Biophysical Research Communications, 2004, 317, 315-320.	2.1	37

#	Article	IF	CITATIONS
163	Reduced Plasma Fibronectin Leads to Delayed Thrombus Growth in the Injured Arterioles in Vivo Blood, 2004, 104, 2619-2619.	1.4	1
164	Elevated Threshold Shear Rate for the Dependence of Glycoprotein Ibα-Mediated Platelet Thrombus Formation onto Immobilized von Willebrand Factor in Mouse Blood Blood, 2004, 104, 3662-3662.	1.4	1
165	Correction of a Murine Model of Von Willebrand Disease by Gene Transfer Blood, 2004, 104, 3180-3180.	1.4	Ο
166	GPIbα Is Essential for Platelet Adhesion during Thrombus Formation: Studies with Mutant Mice Deficient in the Extracellular Domain of GPIbα Blood, 2004, 104, 3659-3659.	1.4	0
167	CalDAC-GEFI Is a Key Signal Integrator in Platelet Activation and Thrombus Formation Blood, 2004, 104, 326-326.	1.4	0
168	Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nature Medicine, 2003, 9, 1020-1025.	30.7	282
169	P-selectin and leukocyte microparticles are associated with venous thrombogenesis. Journal of Vascular Surgery, 2003, 38, 1075-1089.	1.1	206
170	The Clearance Mechanism of Chilled Blood Platelets. Cell, 2003, 112, 87-97.	28.9	394
171	Nitric Oxide Regulates Exocytosis by S-Nitrosylation of N-ethylmaleimide-Sensitive Factor. Cell, 2003, 115, 139-150.	28.9	413
172	Platelets in Inflammation and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 2131-2137.	2.4	483
173	Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2415-2419.	7.1	192
174	Platelet P-selectin facilitates atherosclerotic lesion development. Blood, 2003, 101, 2661-2666.	1.4	367
175	Mechanisms and implications of platelet discoid shape. Blood, 2003, 101, 4789-4796.	1.4	141
176	Control of thrombus embolization and fibronectin internalization by integrin αIIbβ3 engagement of the fibrinogen γ chain. Blood, 2003, 102, 3609-3614.	1.4	78
177	Metalloproteinase inhibitors improve the recovery and hemostatic function of in vitro–aged or –injured mouse platelets. Blood, 2003, 102, 4229-4235.	1.4	156
178	Antithrombotic activity of TNF-α. Journal of Clinical Investigation, 2003, 112, 1589-1596.	8.2	77
179	Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPARα. Blood, 2002, 100, 1340-1346.	1.4	150
180	CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism. Nature Medicine, 2002, 8, 247-252.	30.7	698

#	Article	IF	CITATIONS
181	Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Investigative Ophthalmology and Visual Science, 2002, 43, 1135-41.	3.3	91
182	Interleukin 11 significantly increases plasma von Willebrand factor and factor VIII in wild type and von Willebrand disease mouse models. Blood, 2001, 97, 465-472.	1.4	46
183	Increased thrombogenesis and embolus formation in mice lacking glycoprotein V. Blood, 2001, 98, 368-373.	1.4	68
184	Localized reduction of atherosclerosis in von Willebrand factor–deficient mice. Blood, 2001, 98, 1424-1428.	1.4	188
185	P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Expressed on Platelets and Can Mediate Platelet–Endothelial Interactions in Vivo. Journal of Experimental Medicine, 2000, 191, 1413-1422.	8.5	388
186	Prominent Role of P-Selectin in the Development of Advanced Atherosclerosis in ApoE-Deficient Mice. Circulation, 2000, 101, 2290-2295.	1.6	239
187	Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. Journal of Clinical Investigation, 2000, 106, 385-392.	8.2	422
188	Selective eosinophil transendothelial migration triggered by eotaxin via modulation of Mac-1/ICAM-1 and VLA-4/VCAM-1 interactions. International Immunology, 1999, 11, 1-10.	4.0	85
189	Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Medicine, 1999, 5, 1010-1017.	30.7	519
190	Carboxypeptidase E does not mediate von Willebrand factor targeting to storage granules. European Journal of Cell Biology, 1999, 78, 884-891.	3.6	4
191	P- and E-selectin-deficient mice are susceptible to cerebral ischemia–reperfusion injury. Brain Research, 1999, 835, 360-364.	2.2	21
192	Donor MHC and adhesion molecules in transplant arteriosclerosis. Journal of Clinical Investigation, 1999, 103, 469-474.	8.2	27
193	Angiogenesis in P―and Eâ€Selectinâ€Deficient Mice. Microcirculation, 1998, 5, 173-178.	1.8	22
194	The transmembrane domain enhances granular targeting of P-selectin. European Journal of Cell Biology, 1998, 75, 331-343.	3.6	20
195	Leukocyte-endothelium adhesion molecules in atherosclerosis. Translational Research, 1998, 132, 369-375.	2.3	49
196	Hematopoietic Progenitor Cell Rolling in Bone Marrow Microvessels: Parallel Contributions by Endothelial Selectins and Vascular Cell Adhesion Molecule 1. Journal of Experimental Medicine, 1998, 188, 465-474.	8.5	404
197	Role of P-Selectin Cytoplasmic Domain in Granular Targeting In Vivo and in Early Inflammatory Responses. Journal of Cell Biology, 1998, 143, 1129-1141.	5.2	109
198	A mouse model of severe von Willebrand disease: Defects in hemostasis and thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9524-9529.	7.1	479

#	Article	IF	CITATIONS
199	P-Selectin and Platelet Clearance. Blood, 1998, 92, 4446-4452.	1.4	275
200	P-Selectin and Platelet Clearance. Blood, 1998, 92, 4446-4452.	1.4	11
201	E and P Selectins Are Not Required for Resistance to Severe Murine Lyme Arthritis. Infection and Immunity, 1998, 66, 4557-4559.	2.2	2
202	Experimental murine acid aspiration injury is mediated by neutrophils and the alternative complement pathway. Journal of Applied Physiology, 1997, 83, 1090-1095.	2.5	51
203	Adhesion Molecules — Blood Vessels and Blood Cells. New England Journal of Medicine, 1996, 335, 43-45.	27.0	265
204	Adhesion Molecules. New England Journal of Medicine, 1996, 334, 1526-1529.	27.0	312
205	Susceptibility to Infection and Altered Hematopoiesis in Mice Deficient in Both P- and E-Selectins. Cell, 1996, 84, 563-574.	28.9	507
206	Acute passive anti-glomerular basement membrane nephritis in P-selectin-deficient mice. Kidney International, 1996, 49, 1342-1349.	5.2	82
207	Pâ€Selectin Knockout: A Mouse Model for Various Human Diseases. Novartis Foundation Symposium, 1995, 189, 2-16.	1.1	6
208	Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell, 1993, 74, 541-554.	28.9	1,009
209	Von Willebrand Factor and the Endothelium. Mayo Clinic Proceedings, 1991, 66, 621-627.	3.0	79
210	Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell, 1991, 64, 403-413.	28.9	254
211	von Willebrand Factor Biosynthesis and Processinga. Annals of the New York Academy of Sciences, 1991, 614, 153-166.	3.8	60
212	PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell, 1990, 63, 467-474.	28.9	391
213	Cell Biology of von Willebrand Factor. Annual Review of Cell Biology, 1990, 6, 217-242.	26.1	570
214	PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell, 1989, 59, 305-312.	28.9	878
215	Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell, 1986, 46, 185-190.	28.9	452
216	Cell surface fibronectin and oncogenic transformation. Journal of Supramolecular Structure, 1979, 11, 95-104.	2.3	76